mRDE ERSU
India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal| Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

COMMUNICATIONS

ELECTRONICS ENGINEERING

Date of Test : 02/10/2023

ANSWER KEY >

1.

(c)
7. (b)
13. (c)
19. (a)
25. (b)
2. (a)
8. (a)
14. (d)
20. (b)
26. (c)
3. (a)
9. (d)
15. (c)
21. (c)
27. (b)
4. (a)
10. (c)
16. (a)
22. (b)
28. (b)
5.
(c)
11. (b)
17. (c)
23. (a)
29. (a)
6.
(a)
12. (a)
18. (b)
24. (a)
30. (c)

Detailed Explanations

1. (c)

The condition required to eliminate the slope-overload distortion is,

$$
\begin{aligned}
\frac{\Delta}{T_{s}} & \geq\left|\frac{d m(t)}{d t}\right|_{\max }=\left|2 \pi f_{m} \sin \left(2 \pi f_{m} t\right)\right|_{\max } \\
2 f_{s} & \geq 2 \pi f_{m} \\
f_{s} & \geq \pi f_{m} \approx 3.14 f_{m} \\
f_{s(\text { min })} & =3.14 f_{m}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\text { Quality factor, } Q & =\frac{f_{c}}{B} \\
\text { Range of } Q, 10 & <Q<100 \\
10 & <\frac{f_{c}}{B}<100 \\
\frac{f_{c}}{B} & >10 \quad \frac{B}{f_{c}}<0.1 \\
\frac{f_{c}}{B} & <100 \quad \frac{B}{f_{c}}>0.01 \\
0.01 & <\frac{B}{f_{c}}<0.1
\end{aligned}
$$

3. (a)

Before sampling

After sampling at a frequency of $f_{s}=50 \mathrm{kHz}, X_{s}(f)_{n=-\infty}^{\infty}=\Sigma X_{1}\left(f-n f_{s}\right)_{n=-\infty}^{\infty}+\Sigma X_{2}\left(f-n f_{s}\right)$

4. (a)

Autocorrelation function has maximum value at $\tau=0$.
$\therefore \quad R_{X X}(0) \geq R_{X X}(\tau)$
Autocorrelation function is even function.

$$
\therefore \quad R_{X X}(-\tau)=R_{X X}(\tau)
$$

Value of autocorrelation function decreases as τ increases.
5. (c)

$$
\text { Bit duration, } \begin{aligned}
T_{b} & =\frac{1}{R_{b}} \\
R_{b} & =n f_{s} \\
f_{s} & =5 \times 2 \times 2=20 \mathrm{kHz} \\
T_{b} & =\frac{1}{n \times 20 \times 10^{3}} \\
5 \times 10^{-6} & =\frac{1}{n \times 20 \times 10^{3}} \\
n & =\frac{10^{3}}{20 \times 5} \\
n & =10
\end{aligned}
$$

6. (a)

$$
\begin{aligned}
P\left(x_{1} x_{2} x_{1} x_{3}\right) & =(0.4)(0.3)(0.4)(0.2) \\
& =0.0096 \\
\therefore \quad \text { Information, } I\left(x_{1} x_{2} x_{1} x_{3}\right) & =-\log _{2}(0.0096)=6.7 \text { bits } \\
P\left(x_{4} x_{3} x_{3} x_{2}\right) & =(0.1)(0.2)(0.2)(0.3) \\
& =0.0012 \\
\mathrm{I}\left(x_{4} x_{3} x_{3} x_{2}\right) & =-\log _{2}(0.0012) \\
& =9.7 \mathrm{bits} \\
\therefore \quad \text { Ratio } & =\frac{6.7}{9.7}=0.691
\end{aligned}
$$

7. (b)

Crossover probability of overall channel $=P\left(y_{0} \mid x_{1}\right)=P\left(y_{1} \mid x_{0}\right)$

$$
\begin{aligned}
P\left(y_{0} \mid x_{1}\right) & =P\left(y_{0} \mid z_{0}\right) P\left(z_{0} \mid x_{1}\right)+P\left(y_{0} \mid z_{1}\right) P\left(z_{1} \mid x_{1}\right) \\
& =(0.80 \times 0.20)+(0.20 \times 0.80)=0.32
\end{aligned}
$$

So, the crossover probability of the resultant BSC $=0.32$
8. (a)

$$
\begin{aligned}
H(x) & =-\sum_{i=0}^{3} P\left(x_{i}\right) \log _{2} P\left[x_{i}\right] \\
& =-\left[\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)+\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)+\frac{1}{8} \times 2 \log _{2}\left(\frac{1}{8}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}+\frac{2}{4}+\frac{6}{8} \\
H(x) & =1.75 \text { bits } / \text { symbol }
\end{aligned}
$$

9. (d)

For matched filter,

$$
\begin{aligned}
(\mathrm{SNR})_{\max } & =\frac{2 E_{s}}{N_{0}} \\
E_{s} & =\text { Energy of the signal } s(t) \\
& =\int_{-\infty}^{\infty}|s(t)|^{2} d t=\int_{0}^{2}(4)^{2} d t=32
\end{aligned}
$$

So,

$$
(\mathrm{SNR})_{\max }=\frac{2(32)}{N_{0}}=\frac{64}{N_{0}}
$$

10. (c)

For coherent BPSK,

$$
\begin{aligned}
P_{e} & =Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)=Q\left(\sqrt{\frac{E_{b}}{\left(N_{0} / 2\right)}}\right) \\
& =Q\left(\sqrt{\frac{10 \times 10^{-6}}{1 \times 10^{-9}}}\right)=Q\left(\sqrt{10^{4}}\right)=Q(100)
\end{aligned}
$$

11. (b)

Probability of error in terms of Q-function is given by,

$$
P_{e}=Q\left(\sqrt{\frac{d_{\min }^{2}}{2 N_{0}}}\right)
$$

$$
d_{\min }=\sqrt{2} a=2 \sqrt{2}
$$

$$
\begin{aligned}
\frac{N_{0}}{2} & =4 \mathrm{~W} / \mathrm{Hz} \\
N_{0} & =8 \mathrm{~W} / \mathrm{Hz} \\
P_{e} & =Q\left(\sqrt{\frac{d_{\min }^{2}}{2 N_{0}}}\right)=Q\left(\sqrt{\frac{(2 \sqrt{2})^{2}}{2 \times 8}}\right) \\
P_{e} & =Q\left(\sqrt{\frac{8}{2 \times 8}}\right) \\
P_{e} & =Q(\sqrt{0.5})
\end{aligned}
$$

12. (a)

$$
\begin{aligned}
p(0 / 1) & =0.25 \\
p(0 / 1) & =1-q \\
1-q & =0.25 \\
q & =0.75 \\
p(z=0)=0.4 & =p(0) p\left(\frac{0}{0}\right)+p(1) p\left(\frac{0}{1}\right) \\
0.4 & =0.5 p+0.5 \times 0.25 \\
0.4 & =0.5 p+0.125 \\
0.5 p & =0.275 ; \quad p=0.55
\end{aligned}
$$

Crossover probabilities $\rightarrow(1-p)=0.45$ and $(1-q)=0.25$
13. (c)

RMS value of signal remains same after rectification but dynamic range decreases therefore step size decreases and Noise power decreases.

$$
\text { Signal power }=\frac{A^{2}}{2}=\frac{2^{2}}{2}=2
$$

Quantization Noise Power $=\frac{\Delta^{2}}{12}$ where $\Delta=$ step size

$$
\begin{aligned}
\Delta & =\frac{2-0}{2^{n}}=\frac{2}{2^{8}}=\frac{1}{2^{7}} \\
\frac{S}{N} & =\frac{2}{1} \cdot 2^{14} \times 12=393216=55.94 \mathrm{~dB}
\end{aligned}
$$

14. (d)

$$
\begin{aligned}
& Z=2 X+Y \\
& E[Z]=\mathrm{E}[2 X+Y] \\
&=2 E[X]+E[Y] \\
& E[X]=0, \quad E[Y]=0 \\
& E[Z]=0 \\
& \text { Therefore, } \quad \begin{aligned}
& \\
& =E\left[(2 X+Y)^{2}\right]-0 \\
& =E\left[4 X^{2}+Y^{2}+4 X Y\right] \\
& =4 E\left[X^{2}\right]+E\left[Y^{2}\right]+4 E[X Y] \\
E\left[X^{2}\right] & =\operatorname{Var}[X] \text { as } E[X]=0 \\
E\left[Y^{2}\right] & =\operatorname{Var}[Y] \text { as } E[Y]=0 \\
E[X Y] & =E[X] E[Y] \text { as } X \text { and } Y \text { are independent } \\
\operatorname{Var}(Z) & =4 \times 1+1+4 \times 0 \\
\operatorname{Var}(Z) & =5
\end{aligned} \text { Therefore, } \quad \begin{aligned}
2
\end{aligned} \\
&
\end{aligned}
$$

15. (c)

Power spectral density of white noise

Frequency response of filter

Noise after passing through the filter

Output noise power $=$ Area under power spectral density curve

$$
\begin{aligned}
& =2 \times \frac{N_{o}}{2} \times 2 \times 10^{3}=2 \times 4 \times 10^{-6} \times 10^{3} \\
& =8 \times 10^{-3} \mathrm{~W}=8 \mathrm{~mW}
\end{aligned}
$$

16. (a)

Local oscillation frequency, $f_{\text {LO }}=f_{s}+f_{I F}$
Maximum $f_{L O}=f_{s_{\text {max }}}+f_{I F}$

$$
f_{L O_{\max }}=1600+455=2055 \mathrm{kHz}
$$

Minimum local oscillation frequency, $f_{L O_{\text {min }}}=f_{s_{\text {min }}}+f_{I F}$

$$
\begin{aligned}
f_{L O_{\min }} & =540+455=995 \mathrm{kHz} \\
\frac{f_{L O_{\max }}}{f_{L O_{\min }}} & =\frac{2055}{995}=2.065
\end{aligned}
$$

17. (c)

$$
\begin{aligned}
S_{N_{C}}(f) & =\left\{\begin{array}{cc}
S_{N}\left(f-f_{c}\right)+S_{N}\left(f+f_{c}\right), & -B \leq f \leq B \\
0 & \text { else }
\end{array}\right. \\
f_{c} & =10 \mathrm{kHz},
\end{aligned}
$$

Plotting $S_{N}\left(f+f_{c}\right)$

Plotting $S_{N}\left(f-f_{c}\right)$

18. (b)

If X is equally likely to take both positive and negative values then,

$$
\begin{aligned}
P(X<0) & =P(X>0) \\
P(X) & =\text { Area under curve } \\
P(X<0) & =b \times 1=b \\
P(X>0) & =b^{2} \times 4=4 b^{2} \\
b & =4 b^{2} \\
b & =\frac{1}{4}
\end{aligned}
$$

Also, Area of PDF curve $=1$

$$
b+4 b^{2}+a=1
$$

$$
\begin{aligned}
\frac{1}{4}+4 \times \frac{1}{16}+a & =1 \\
a & =1-\frac{1}{2}=0.5
\end{aligned}
$$

19. (a)

Now output of resistive network $=\frac{1}{2} V_{i}=\frac{9}{2} \sin \omega_{m} t$
Dynamic range $=9 \mathrm{~V}$
Dynamic ranges reduces to $\frac{1}{2}$
Step size remains same,
$\therefore \quad$ No. of levels $\frac{1}{2} \times 512=256$

As Dynamic range reduces, $n=8$

$$
\begin{aligned}
\frac{S}{N} & =1.76+6 n \\
& =1.76+6 \times 8 \\
& =49.8 \mathrm{~dB}
\end{aligned}
$$

20. (b)

$$
\begin{aligned}
f_{L O} & =f_{s}+f_{I F} \\
f_{s i}(\text { image frequency }) & =f_{s}+2 f_{I F} \\
f_{s} & =90 \mathrm{MHz} \\
f_{L O} & =f_{s}+f_{I F} f_{s i}=f_{s}+2 f_{I F}
\end{aligned}
$$

When

We have to select $f_{I F}$ such that $f_{s i}$ falls outside the tuned range.

$$
\begin{aligned}
f_{s i} & \geq 104 \mathrm{MHz} \\
104 & =90+2 f_{I F} \\
f_{I F_{\min }} & =7 \mathrm{MHz}
\end{aligned}
$$

21. (c)

Probability of transmitting zero, $P(0)=\frac{2}{3}$
Probability of transmitting one, $P(1)=1-\frac{2}{3}=\frac{1}{3}$
P (at least two bits are zeroes) $=1-P$ (no bit is zero)

$$
\text { - } P \text { (one bit is zero). }
$$

$$
\begin{aligned}
& =1-{ }^{5} C_{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{5}-{ }^{5} C_{1}\left(\frac{2}{3}\right)^{1}\left(\frac{1}{3}\right)^{4} \\
& =1-\frac{1}{3^{5}}-\frac{10}{3^{5}} \\
& =1-\frac{11}{243}=0.954
\end{aligned}
$$

22. (b)

The angle of the modulated signal $s(t)$ can be given as,

$$
\theta(t)=2 \pi f_{c} t+4 \sin (4000 \pi t)+3 \cos (4000 \pi t)
$$

The instantaneous frequency of the modulated signal can be given as,

$$
\begin{aligned}
f_{i} & =\frac{1}{2 \pi} \frac{d[\theta(t)]}{d t} \\
f_{i} & =f_{c}+\frac{1}{2 \pi}[4 \times 4000 \pi \cos 4000 \pi t+3 \times 4000 \pi[-\sin 4000 \pi t]] \\
& =f_{c}+[8000 \cos (4000 \pi t)-6000 \sin (4000 \pi t)] \\
& =f_{c}+2000 \times 5[\cos (4000 \pi t+\alpha)] \text { where } \alpha=\tan ^{-1}\left(\frac{3}{4}\right) \\
f_{i(\max)} & =f_{c}+2000 \times 5 \\
& =100 \mathrm{kHz}+10 \mathrm{kHz} \\
f_{i(\max)} & =110 \mathrm{kHz}
\end{aligned}
$$

23. (a)

The carrier component of the FM signal will be zero when $J_{0}(\beta)=0$.
We know $J_{0}(\beta)=0$ for $\beta=2.41,5.52,8.65,11.8$ \qquad
So, when $A_{m}=4 \mathrm{~V}$, the corresponding modulation index is $\beta=2.41$.

$$
\begin{aligned}
& \beta=2.41 \\
& \beta=\frac{\Delta f}{f_{m}}=\frac{k_{f} A_{m}}{f_{m}} \\
& k_{f}=\frac{\beta f_{m}}{A_{m}}=\frac{2.41 \times 2 \times 10^{3}}{4} \\
& k_{f}=1.205 \mathrm{kHz} / \mathrm{V}
\end{aligned}
$$

24. (a)

$$
\begin{aligned}
& L=\sum_{i=1}^{4} P\left(x_{i}\right) n_{i} \\
& =(0.5 \times 1)+(0.25 \times 2)+(0.125 \times 3)+(0.125 \times 3) \\
& =0.5+0.5+0.75 \\
& L=1.75 \text { bits } / \text { symbol } \\
& H=-\sum_{i=1}^{4} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right) \\
& H=-\left[\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)+\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)+\frac{2}{8} \log _{2}\left(\frac{1}{8}\right)\right] \\
& H=1.75 \text { bits/symbol } \\
& \eta=\frac{H}{L}=\frac{1.75}{1.75}=1 \\
& \text { Redundancy } \gamma=1-\eta=1-1=0
\end{aligned}
$$

25. (b)

Bandwidth of the baseband signal with raised cosine pulse shaping will be,

$$
(B W)_{\text {signal }}=\frac{R_{b}}{2}(1+\alpha)=\frac{1000}{2}(1+\alpha)=500(1+\alpha) \mathrm{kHz}
$$

For proper transmission of the data,

$$
\begin{aligned}
(\mathrm{BW})_{\text {signal }} & \leq(\mathrm{BW})_{\text {channel }} \\
500(1+\alpha) & \leq 600 \\
(1+\alpha) & \leq 1.20 \\
\alpha & \leq 0.20 \\
\alpha_{\max } & =0.20
\end{aligned}
$$

26. (c)

$$
s(t) \longrightarrow \begin{gathered}
\begin{array}{c}
\text { Filter matched } \\
\text { to } s(t)
\end{array} \\
\longrightarrow(t) \\
\hline
\end{gathered}
$$

For a matched filter, peak value of the output will be numerically equal to the energy of the input signal.

So,

$$
\begin{aligned}
&|y(t)|_{\max }=\int_{-\infty}^{\infty}|s(t)|^{2} d t \\
& s(t)=\left\{\begin{array}{cc}
\left(3-\frac{3}{2}|t|\right) \mathrm{V} ; & 0 \leq|t| \leq 2 \\
0 & ;
\end{array}\right. \\
& \text { otherwise }
\end{aligned} ~ . ~ \begin{array}{cl}
(3)
\end{array}
$$

So,

$$
\begin{aligned}
|y(t)|_{\max } & =2 \int_{0}^{2}\left(3-\frac{3}{2} t\right)^{2} d t \\
& =\frac{9}{2} \int_{0}^{2}\left(t^{2}+4-4 t\right) d t \\
& =\frac{9}{2}\left[\frac{t^{3}}{3}+4 t-2 t^{2}\right]_{0}^{2}=12 \mathrm{~V}
\end{aligned}
$$

27. (b)

$$
\begin{aligned}
f_{Z}(z) & =f_{X}(z) * f_{Y}(z) \\
f_{X}(z) & =a e^{-a z} u(z) \\
f_{Y}(z) & =b e^{-b z} u(z) \\
L\left\{f_{X}(z)\right\} & =\frac{a}{s+a} \text { and } L\left\{f_{Y}(z)\right\}=\frac{b}{s+b} \\
f_{Z}(z) & =L^{-1}\left\{\frac{a b}{(s+a)(s+b)}\right\}=L^{-1}\left\{\frac{a b}{(b-a)}\left[\frac{1}{(s+a)}-\frac{1}{(s+b)}\right]\right\} \\
& =\frac{a b}{(b-a)}\left[e^{-a z}-e^{-b z}\right] u(z)
\end{aligned}
$$

28. (b)

The transmission efficiency of an AM signal can be given by,

$$
\eta=\frac{k_{a}^{2} P_{m}}{1+k_{a}^{2} P_{m}}
$$

Here,

$$
\begin{aligned}
k_{a} & =\text { amplitude sensitivity of the modulator } \\
& =0.25 \mathrm{~V}^{-1} \\
P_{m} & =\text { Power of the message signal }
\end{aligned}
$$

For the given message signal,

So,

$$
\begin{aligned}
P_{m} & =A^{2}=(2)^{2}=4 \\
\eta & =\frac{(0.25)^{2}(4)}{1+(0.25)^{2}(4)}=\frac{0.25}{1+0.25}=\frac{1}{5}=0.20 \text { (or) } 20 \%
\end{aligned}
$$

29. (a)

The rule to decide an optimum threshold value using MAP criteria is as follows:

$$
\begin{aligned}
& \\
& f_{R}\left(r \mid s_{0}\right) P\left(s_{0}\right) \stackrel{H_{0}}{\gtrless} \\
& \underset{H_{1}}{\gtrless} f_{R}\left(r \mid s_{1}\right) P\left(s_{1}\right)
\end{aligned}
$$

The above expression says that,

- Decision is made in favour of " 0 ", if $f_{R}\left(r \mid s_{0}\right) P\left(s_{0}\right)$ is greater than $f_{R}\left(r \mid s_{1}\right) P\left(s_{1}\right)$.
- Decision is made in favour of " 1 ", if $f_{R}\left(r \mid s_{1}\right) P\left(s_{1}\right)$ is greater than $f_{R}\left(r \mid s_{0}\right) P\left(s_{0}\right)$.

Given that $P\left(s_{0}\right)=\frac{2}{3}$ and $P\left(s_{1}\right)=\frac{1}{3}$.

The optimum threshold can be decided by using MAP criteria, by plotting the functions $f_{R}\left(r \mid s_{1}\right) P\left(s_{0}\right)$ and $f_{R}\left(r \mid s_{1}\right) P\left(s_{1}\right)$ as follows:

It is clear from the above diagram that,
For $r<1, f_{R}\left(r \mid s_{0}\right) P\left(s_{0}\right)>f_{R}\left(r \mid s_{1}\right) P\left(s_{1}\right)$ and for $r>1, f_{R}\left(r \mid s_{1}\right) P\left(s_{1}\right)>f_{R}\left(r \mid s_{0}\right) P\left(s_{0}\right)$.
So, the optimum threshold value is, $r_{\text {th }}=1$.
30. (c)

The output of the narrowband FM modulator can be given by,

$$
x(t)=A \cos \left[2 \pi f_{0} t+\phi(t)\right] ;|\phi(t)|_{\max }=0.10 \text { radians }
$$

The signal at the output of upper frequency multiplier can be given by,

$$
y(t)=A \cos \left[2 \pi n_{1} f_{0} t+n_{1} \phi(t)\right]
$$

After mixing $y(t)$ with the output signal of the lower frequency multiplier, we get,

$$
\begin{gathered}
z(t)=A^{2} \cos \left[2 \pi n_{1} f_{0} t+n_{1} \phi(t)\right] \cos \left[2 \pi n_{2} f_{0} t\right] \\
=\frac{A^{2}}{2} \cos \left[2 \pi\left(n_{1}+n_{2}\right) f_{0} t+n_{1} \phi(t)\right]+\frac{A^{2}}{2} \cos \left[2 \pi\left(n_{1}-n_{2}\right) f_{0} t+n_{1} \phi(t)\right]
\end{gathered}
$$

It is given that the mixer is designed for up-conversion. So, the signal $s(t)$ can be given by,

$$
\begin{equation*}
s(t)=\frac{A^{2}}{2} \cos \left[2 \pi\left(n_{1}+n_{2}\right) f_{0} t+n_{1} \phi(t)\right] \tag{i}
\end{equation*}
$$

It is given that, $f_{c}=104 \mathrm{MHz}$ and $\Delta f_{\max }=75 \mathrm{kHz}$ for $s(t)$.
So, the modulation index of the wideband signal $s(t)$ will be,

$$
\begin{aligned}
\beta & =\frac{\Delta f_{\max }}{f_{m(\max)}}=n_{1}|\phi(t)|_{\max } \\
n_{1}(0.10) & =\frac{75 \mathrm{kHz}}{15 \mathrm{kHz}}=5 \\
n_{1} & =\frac{5}{0.10}=50 \\
f_{c} & =\left(n_{1}+n_{2}\right) f_{0}=104 \mathrm{MHz} \\
\left(n_{1}+n_{2}\right) \times 100 & =104 \times 1000 \\
n_{2} & =1040-n_{1}=1040-50=990
\end{aligned}
$$

