- C U	455 .	TEST				SI. : 0	02 SKEC	_EFGHIJ	K_02102
		m				nc			
		India's		nstitute		GATE &	PSUs		
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
	\mathbf{c}								
	CC	DM	Μι	JN				NS	
		LEC	TROI	NICS	EN	GINE	ERIN		
		LEC	TROI		EN	GINE	ERIN		
		LEC	TROI	NICS	EN	GINE	ERIN		
		LEC	TROI	NICS	EN	GINE	ERIN		
ANSW		LEC	TROI	NICS	EN	GINE	ERIN		
ANSW 1.	EI	LEC	TROI	NICS	EN	GINE	ERIN		(b)
	EI //er key	LEC	TRON Date o	VICS of Test	EN(GINE 0/2023	ERIN 3	IG	(b) (c)
1.	EI /ER KEY (c)	LEC	(b)	VICS of Test	EN(: 02/10	GINE 0/2023	ERIN 3	IG 25.	
1. 2.	EI /ER KEY (c) (a)	LEC	(b) (a)	NICS of Test 13. 14.	EN(: 02/1((c) (d)	GINE 0/202: 19. 20.	ERIN 3 (a) (b)	IG 25. 26.	(c)
1. 2. 3.	EI /ER KEY (c) (a) (a)	LEC	(b) (a) (d)	NICS of Test 13. 14. 15.	EN(: 02/1((c) (d) (c)	3INE 0/2023 19. 20. 21.	ERIN 3 (a) (b) (c)	IG 25. 26. 27.	(c) (b)

Detailed Explanations

1. (c)

The condition required to eliminate the slope-overload distortion is,

$$\frac{\Delta}{T_s} \ge \left| \frac{dm(t)}{dt} \right|_{\max} = \left| 2\pi f_m \sin(2\pi f_m t) \right|_{\max}$$
$$2f_s \ge 2\pi f_m$$
$$f_s \ge \pi f_m \approx 3.14 f_m$$
$$f_{s(\min)} = 3.14 f_m$$

2. (a)

Quality factor,
$$Q = \frac{f_c}{B}$$

Range of Q , $10 < Q < 100$
 $10 < \frac{f_c}{B} < 100$
 $\frac{f_c}{B} > 10$ $\frac{B}{f_c} < 0.1$
 $\frac{f_c}{B} < 100$ $\frac{B}{f_c} > 0.01$
 $0.01 < \frac{B}{f_c} < 0.1$

3. (a)

Before sampling

After sampling at a frequency of $f_s = 50 \text{ kHz}$, $X_s(f)_{n=-\infty}^{\infty} = \Sigma X_1 (f - nf_s)_{n=-\infty}^{\infty} + \Sigma X_2 (f - nf_s)_{n=-\infty}^{\infty}$

4. (a)

> Autocorrelation function has maximum value at $\tau = 0$. *.*:.

 $R_{XX}(0) \geq R_{XX}(\tau)$

Autocorrelation function is even function.

...

 $R_{XX}(-\tau) = R_{XX}(\tau)$

Value of autocorrelation function decreases as τ increases.

5. (c)

Bit duration,
$$T_b = \frac{1}{R_b}$$

 $R_b = nf_s$
 $f_s = 5 \times 2 \times 2 = 20 \text{ kHz}$
 $T_b = \frac{1}{n \times 20 \times 10^3}$
 $5 \times 10^{-6} = \frac{1}{n \times 20 \times 10^3}$
 $n = \frac{10^3}{20 \times 5}$
 $n = 10$

6. (a)

$$P(x_1 \ x_2 \ x_1 \ x_3) = (0.4)(0.3)(0.4)(0.2)$$

= 0.0096
:. Information, $I(x_1 \ x_2 \ x_1 \ x_3) = -\log_2(0.0096) = 6.7$ bits
 $P(x_4 \ x_3 \ x_3 \ x_2) = (0.1)(0.2)(0.2)(0.3)$
= 0.0012
 $I(x_4 \ x_3 \ x_3 \ x_2) = -\log_2(0.0012)$
= 9.7 bits

Ratio =
$$\frac{6.7}{9.7} = 0.691$$

7. (b)

:..

Crossover probability of overall channel = $P(y_0|x_1) = P(y_1|x_0)$ $P(y_0|x_1) = P(y_0|z_0) P(z_0|x_1) + P(y_0|z_1) P(z_1|x_1)$ $= (0.80 \times 0.20) + (0.20 \times 0.80) = 0.32$

So, the crossover probability of the resultant BSC = 0.32

8. (a)

$$H(x) = -\sum_{i=0}^{3} P(x_i) \log_2 P[x_i]$$

= $-\left[\frac{1}{2} \log_2\left(\frac{1}{2}\right) + \frac{1}{4} \log_2\left(\frac{1}{4}\right) + \frac{1}{8} \times 2 \log_2\left(\frac{1}{8}\right)\right]$

$$= \frac{1}{2} + \frac{2}{4} + \frac{6}{8}$$
$$H(x) = 1.75 \text{ bits/symbol}$$

9. (d)

For matched filter,

$$(SNR)_{max} = \frac{2E_s}{N_0}$$

$$E_s = \text{Energy of the signal } s(t)$$

$$= \int_{-\infty}^{\infty} |s(t)|^2 dt = \int_{0}^{2} (4)^2 dt = 32$$

$$(SNR)_{max} = \frac{2(32)}{N_0} = \frac{64}{N_0}$$

So,

10.

(c) For coherent BPSK,

$$P_{e} = Q\left(\sqrt{\frac{2E_{b}}{N_{0}}}\right) = Q\left(\sqrt{\frac{E_{b}}{(N_{0}/2)}}\right)$$
$$= Q\left(\sqrt{\frac{10 \times 10^{-6}}{1 \times 10^{-9}}}\right) = Q\left(\sqrt{10^{4}}\right) = Q(100)$$

11. (b)

Probability of error in terms of *Q*-function is given by,

$$P_e = Q\left(\sqrt{\frac{d_{\min}^2}{2N_0}}\right)$$

 $d_{\min} = \sqrt{2}a = 2\sqrt{2}$

$$\frac{N_0}{2} = 4 \text{ W/Hz}$$

$$N_0 = 8 \text{ W/Hz}$$

$$P_e = Q\left(\sqrt{\frac{d_{\min}^2}{2N_0}}\right) = Q\left(\sqrt{\frac{(2\sqrt{2})^2}{2\times 8}}\right)$$

$$P_e = Q\left(\sqrt{\frac{8}{2\times 8}}\right)$$

$$P_e = Q(\sqrt{0.5})$$

12. (a)

$$p(0/1) = 0.25$$

$$p(0/1) = 1 - q$$

$$1 - q = 0.25$$

$$q = 0.75$$

$$p(z = 0) = 0.4 = p(0)p\left(\frac{0}{0}\right) + p(1)p\left(\frac{0}{1}\right)$$

$$0.4 = 0.5p + 0.5 \times 0.25$$

$$0.4 = 0.5p + 0.125$$

$$0.5p = 0.275; \quad p = 0.55$$

Crossover probabilities \rightarrow (1 – *p*) = 0.45 and (1 – *q*) = 0.25

13. (c)

RMS value of signal remains same after rectification but dynamic range decreases therefore step size decreases and Noise power decreases.

Signal power =
$$\frac{A^2}{2} = \frac{2^2}{2} = 2$$

Quantization Noise Power = $\frac{\Delta^2}{12}$ where Δ = step size
 $\Delta = \frac{2-0}{2^n} = \frac{2}{2^8} = \frac{1}{2^7}$
 $\frac{S}{N} = \frac{2}{1} \cdot 2^{14} \times 12 = 393216 = 55.94 \text{ dB}$

14. (d)

$$Z = 2X + Y$$

$$E[Z] = E[2X + Y]$$

$$= 2E[X] + E[Y]$$

$$E[X] = 0, \quad E[Y] = 0$$
Therefore,
$$E[Z] = 0$$

$$Var(Z) = E[Z^{2}] - E[Z]^{2}$$

$$= E[(2X + Y)^{2}] - 0$$

$$= E[4X^{2} + Y^{2} + 4XY]$$

$$= 4E[X^{2}] + E[Y^{2}] + 4E[XY]$$

$$E[X^{2}] = Var[X] \text{ as } E[X] = 0$$

$$E[Y^{2}] = Var[Y] \text{ as } E[Y] = 0$$

$$E[XY] = E[X] E[Y] \text{ as } X \text{ and } Y \text{ are independent}$$
Therefore,
$$Var(Z) = 4 \times 1 + 1 + 4 \times 0$$

$$Var(Z) = 5$$

15. (c)

Power spectral density of white noise

Output noise power = Area under power spectral density curve

$$= 2 \times \frac{N_o}{2} \times 2 \times 10^3 = 2 \times 4 \times 10^{-6} \times 10^3$$
$$= 8 \times 10^{-3} \text{ W} = 8 \text{ mW}$$

Indiate Based Institute for IES (GATE & PSI)

16. (a)

> Local oscillation frequency, $f_{LO} = f_s + f_{IF}$ $\begin{array}{l} \text{Maximum } f_{LO} = f_{s_{max}} + f_{IF} \\ f_{LO_{max}} = 1600 + 455 = 2055 \text{ kHz} \\ \text{Minimum local oscillation frequency, } f_{LO_{min}} = f_{s_{min}} + f_{IF} \\ f_{LO_{min}} = 540 + 455 = 995 \text{ kHz} \\ \end{array}$ $\frac{f_{LO_{\text{max}}}}{f_{LO_{\text{min}}}} = \frac{2055}{995} = 2.065$

17. (c)

$$S_{N_{C}}(f) = \begin{cases} S_{N}(f - f_{c}) + S_{N}(f + f_{c}), & -B \le f \le B \\ 0 & \text{else} \end{cases}$$

$$f_c = 10$$
 kHz,

Plotting $S_N(f + f_c)$

18. (b)

:..

If X is equally likely to take both positive and negative values then,

$$P(X < 0) = P(X > 0)$$

$$P(X) = \text{Area under curve}$$

$$P(X < 0) = b \times 1 = b$$

$$P(X > 0) = b^{2} \times 4 = 4b^{2}$$

$$b = 4b^{2}$$

$$b = \frac{1}{4}$$

Also, Area of PDF curve = 1

$$b+4b^2+a=1$$

$$\frac{1}{4} + 4 \times \frac{1}{16} + a = 1$$
$$a = 1 - \frac{1}{2} = 0.5$$

19. (a)

20.

India's Beet Institute for IES, GATE & PSUs

21. (c)

Probability of transmitting zero, $P(0) = \frac{2}{3}$ Probability of transmitting one, $P(1) = 1 - \frac{2}{3} = \frac{1}{3}$ P (at least two bits are zeroes) = 1 - P(no bit is zero) - P (one bit is zero). $= 1 - {}^{5}C_{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{5} - {}^{5}C_{1}\left(\frac{2}{3}\right)^{1}\left(\frac{1}{3}\right)^{4}$ $= 1 - \frac{1}{3^{5}} - \frac{10}{3^{5}}$ $= 1 - \frac{11}{243} = 0.954$

22. (b)

The angle of the modulated signal s(t) can be given as,

$$\Theta(t) = 2\pi f_c t + 4\sin(4000\pi t) + 3\cos(4000\pi t)$$

The instantaneous frequency of the modulated signal can be given as,

$$\begin{split} f_i &= \frac{1}{2\pi} \frac{d[\theta(t)]}{dt} \\ f_i &= f_c + \frac{1}{2\pi} \Big[4 \times 4000\pi \cos 4000\pi t + 3 \times 4000\pi [-\sin 4000\pi t] \Big] \\ &= f_c + [8000 \cos(4000\pi t) - 6000 \sin(4000\pi t)] \\ &= f_c + 2000 \times 5 [\cos(4000\pi t + \alpha)] \text{ where } \alpha = \tan^{-1} \Big(\frac{3}{4} \Big) \\ f_{i(\max)} &= f_c + 2000 \times 5 \\ &= 100 \text{ kHz} + 10 \text{ kHz} \\ f_{i(\max)} &= 110 \text{ kHz} \end{split}$$

23. (a)

The carrier component of the FM signal will be zero when $J_0(\beta) = 0$. We know $J_0(\beta) = 0$ for $\beta = 2.41$, 5.52, 8.65, 11.8 So, when $A_m = 4$ V, the corresponding modulation index is $\beta = 2.41$. $\beta = 2.41$

$$\beta = \frac{\Delta f}{f_m} = \frac{k_f A_m}{f_m}$$
$$k_f = \frac{\beta f_m}{A_m} = \frac{2.41 \times 2 \times 10^3}{4}$$
$$k_f = 1.205 \text{ kHz/V}$$

24. (a)

$$\begin{aligned} \overline{x_4} & 0.5 (0) & 0.5 (0) & 0.5 \\ x_2 & 0.25 (10) & 0.25 \\ x_3 & 0.125 \\ 0.125 \end{bmatrix} \underbrace{(110)}_{(111)} \rightarrow 0.25 \\ \underbrace{(11)}_{(111)} \rightarrow 0.25 \\ \underbrace{(11)}_{(11)} \rightarrow 0.25 \\ \underbrace{$$

25. (b)

Bandwidth of the baseband signal with raised cosine pulse shaping will be,

$$(BW)_{signal} = \frac{R_b}{2}(1+\alpha) = \frac{1000}{2}(1+\alpha) = 500(1+\alpha) \text{ kHz}$$

For proper transmission of the data,

$$(BW)_{signal} \le (BW)_{channel}$$

$$500(1 + \alpha) \le 600$$

$$(1 + \alpha) \le 1.20$$

$$\alpha \le 0.20$$

$$\alpha_{max} = 0.20$$

26. (c)

$$s(t) \longrightarrow \begin{array}{c} \text{Filter matched} \\ \text{to } s(t) \end{array} \longrightarrow y(t)$$

For a matched filter, peak value of the output will be numerically equal to the energy of the input signal.

So,

$$|y(t)|_{\max} = \int_{-\infty}^{\infty} |s(t)|^2 dt$$

$$s(t) = \begin{cases} \left(3 - \frac{3}{2}|t|\right) \forall; & 0 \le |t| \le 2\\ 0; & \text{otherwise} \end{cases}$$

So,

n made

$$|y(t)|_{\max} = 2\int_{0}^{2} \left(3 - \frac{3}{2}t\right)^{2} dt$$
$$= \frac{9}{2}\int_{0}^{2} (t^{2} + 4 - 4t) dt$$
$$= \frac{9}{2} \left[\frac{t^{3}}{3} + 4t - 2t^{2}\right]_{0}^{2} = 12 \text{ V}$$

27. (b)

$$\begin{split} f_{Z}(z) &= f_{X}(z) * f_{Y}(z) \\ f_{X}(z) &= ae^{-az} u(z) \\ f_{Y}(z) &= be^{-bz} u(z) \\ L\{f_{X}(z)\} &= \frac{a}{s+a} \quad \text{and} \quad L\{f_{Y}(z)\} = \frac{b}{s+b} \\ f_{Z}(z) &= L^{-1} \left\{ \frac{ab}{(s+a)(s+b)} \right\} = L^{-1} \left\{ \frac{ab}{(b-a)} \left[\frac{1}{(s+a)} - \frac{1}{(s+b)} \right] \right\} \\ &= \frac{ab}{(b-a)} \left[e^{-az} - e^{-bz} \right] u(z) \end{split}$$

28. (b)

The transmission efficiency of an AM signal can be given by,

$$\eta = \frac{1}{1}$$

Here,

So,

$$\begin{split} \eta &= \frac{k_a^2 P_m}{1+k_a^2 P_m} \\ k_a &= \text{amplitude sensitivity of the modulator} \\ &= 0.25 \text{ V}^{-1} \end{split}$$

 P_m = Power of the message signal

For the given message signal,

$$P_m = A^2 = (2)^2 = 4$$

$$\eta = \frac{(0.25)^2 (4)}{1 + (0.25)^2 (4)} = \frac{0.25}{1 + 0.25} = \frac{1}{5} = 0.20 \text{ (or) } 20\%$$

29. (a)

The rule to decide an optimum threshold value using MAP criteria is as follows:

$$f_{R}(r | s_{0})P(s_{0}) \stackrel{H_{0}}{\underset{K}{>}} f_{R}(r | s_{1})P(s_{1})$$

The above expression says that,

- Decision is made in favour of "0", if $f_R(r \mid s_0) P(s_0)$ is greater than $f_R(r \mid s_1) P(s_1)$.
- Decision is made in favour of "1", if $f_R(r | s_1)P(s_1)$ is greater than $f_R(r | s_0)P(s_0)$.

Given that $P(s_0) = \frac{2}{3}$ and $P(s_1) = \frac{1}{3}$.

The optimum threshold can be decided by using MAP criteria, by plotting the functions $f_R(r \mid s_1)P(s_0)$ and $f_R(r \mid s_1)P(s_1)$ as follows:

It is clear from the above diagram that,

For r < 1, $f_R(r \mid s_0)P(s_0) > f_R(r \mid s_1)P(s_1)$ and for r > 1, $f_R(r \mid s_1)P(s_1) > f_R(r \mid s_0)P(s_0)$. So, the optimum threshold value is, $r_{th} = 1$.

30. (c)

The output of the narrowband FM modulator can be given by,

 $x(t) = A\cos[2\pi f_0 t + \phi(t)]; |\phi(t)|_{\max} = 0.10 \text{ radians}$

The signal at the output of upper frequency multiplier can be given by,

 $y(t) = A\cos[2\pi n_1 f_0 t + n_1 \phi(t)]$

After mixing y(t) with the output signal of the lower frequency multiplier, we get,

$$z(t) = A^{2} \cos[2\pi n_{1} f_{0} t + n_{1} \phi(t)] \cos[2\pi n_{2} f_{0} t]$$
$$= \frac{A^{2}}{2} \cos[2\pi (n_{1} + n_{2}) f_{0} t + n_{1} \phi(t)] + \frac{A^{2}}{2} \cos[2\pi (n_{1} - n_{2}) f_{0} t + n_{1} \phi(t)]$$

It is given that the mixer is designed for up-conversion. So, the signal s(t) can be given by,

$$s(t) = \frac{A^2}{2} \cos[2\pi(n_1 + n_2)f_0t + n_1\phi(t)] \qquad \dots(i)$$

It is given that, $f_c = 104$ MHz and $\Delta f_{max} = 75$ kHz for s(t). So, the modulation index of the wideband signal s(t) will be,

$$\beta = \frac{\Delta f_{\max}}{f_{m(\max)}} = n_1 |\phi(t)|_{\max}$$

$$n_1(0.10) = \frac{75 \text{ kHz}}{15 \text{ kHz}} = 5$$

$$n_1 = \frac{5}{0.10} = 50$$

$$f_c = (n_1 + n_2)f_0 = 104 \text{ MHz}$$

$$(n_1 + n_2) \times 100 = 104 \times 1000$$

$$n_2 = 1040 - n_1 = 1040 - 50 = 990$$