REB RANK IMPROVEMENT BATCH MECHANICAL ENGINEERING

RIB-R | T12

Session 2019 - 20 | S.No. : 170919_GH1A

ANSW	ER KEY	>	Manufa	cturing					
1.	(d)	7.	. (a)	13.	(c)	19.	(d)	25.	(a)
2.	(b)	8	. (c)	14.	(a)	20.	(a)	26.	(a)
3.	(c)	9.	. (d)	15.	(a)	21.	(c)	27.	(d)
4.	(d)	10	0. (a)	16.	(c)	22.	(a)	28.	(b)
5.	(b)	1	1. (b)	17.	(d)	23.	(b)	29.	(a)
6.	(d)	1:	2. (d)	18.	(b)	24.	(b)	30.	(b)

DETAILED EXPLANATIONS

1. (d)

Gating : Gating design is related to casting.

Fettling : Trim or clean the rough edges of a metal casting.

Stack moulding : Stack molding is a high production sand casting or green sand molding process. It is popular method for producing piston ring etc.

Calendaring : It is a finishing process used on cloth and fabrics. Also used during plastic processing etc.

3. (c)

Maximum draft =
$$\mu^2 R$$

= $(0.1)^2 \times 100 = 1 \text{ mm}$

6. (d)

Melting of base material is not involved in friction welding process as heat is generated due to rubbing and external pressure.

7. (a)

G02 : CW Interpolation

G03 : CCW Interpolation

We have to remember some basic and standard G-codes to solve such.

9. (d)

Gear shaping: finishing process of an external spur and helical gear as well as internal gear.

 $F = V(\rho - d)gN$

10. (a)

BLU,
$$\Delta x = \frac{P_x}{2\pi} \Delta \theta = \frac{3}{2\pi} \times \frac{1.5\pi}{180} \times 10^3 \,\mu\text{m} = 12.5 \,\mu\text{m}$$

11. (b)

Buoyant force,

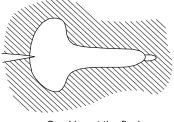
Volume of core material,	$V = \frac{\pi}{4} \times 0.15^2 \times 0.2$
	$= 3.5343 \times 10^{-3} \mathrm{m}^3$
Density of liquid metal,	$\rho = 11,300 \text{kg/m}^3$
Density of core material,	$d = 1600 \text{ kg/m}^3$
	$F = 3.5343 \times 10^{-3} \times (11300 - 1600) \times 9.81$
	= 336.3 N

12. (d)

Heat = $I^2 Rt$ = $(6000)^2 \times 75 \times 10^{-6} \times 0.15 = 405 \text{ J}$

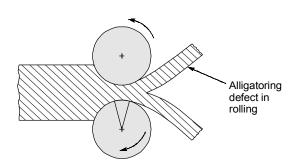
Weld nugget volume =
$$\frac{\pi}{4} \times d^2 \times t$$

= $\frac{\pi}{4} \times 5^2 \times 2.5 = 49.0874 = 142.35 \text{ J}$
Remaining heat to the surrounding = $405 - 142.35 = 262.65 \text{ J}$
(c)
Clearance, $C = 0.06 \times 3 = 0.18 \text{ mm}$
For blanking operation:


Die size = blank size = 60 mm
Punch size = blank size - 2C
=
$$60 - 2 \times 0.18 = 59.64$$
 m

15. (a)

13. (c)


Clearance,

Fir-tree cracking in extrusion: Too high extrusion speed, too large a friction and too high a temperature may result in formation of surface cracks. Fir-tree cracks are transverse cracks which often occur in aluminium or magnesium due to hot shortness.

Cracking at the flash

Alligatoring: It is a complex phenomena that results from inhomogeneous deformation of the material during rolling.

16. (c)

Extrusion force,

$$F = A_0 k \ln \left(\frac{A_0}{A_f}\right)$$

 $\frac{F}{A_0} = k \ln \left(\frac{A_0}{A_f} \right)$

Pressure,

$$A_0$$
 = Original area of billet, $R = \frac{A_0}{A_f}$, extrusion ratio

k (extrusion constant) - measure of the strength of the material being extruded and the frictional conditions and depends on extrusion temperature.

Therefore, pressure \uparrow if $R \uparrow$

Pressure is independent of length of billet.

17. (d)

$$F = A \cdot k \ln R = \frac{\pi}{4} \times (60)^2 \times 300 \times \ln(4) = 1.176 \text{ MN}$$

18. (b)

Blanking force,

```
F = (\pi \ d \ t)\tau_s = \pi \times 250 \times 2.5 \times 150 \times 10^{-3} = 294.5 \text{ kN}
```

20. (a)

Taylor's tool life equation, $VT^n = C$

$$V_1 T_1^n = V_2 T_2^n$$

 $120 \times (12)^n = 90 \times (36)^n$

Taking logarithm:

$$\frac{120}{90} = \left(\frac{36}{12}\right)^{n}$$

$$1.33 = (3)^{n}$$

$$n \ln(3) = \ln (1.33)$$

$$n = 0.26186 \approx 0.262$$

23. (b)

From volume constancy,

$$\pi r_1^2 h_1 = \pi r_2^2 h_2$$

$$r = r_2 = r_1 \left(\frac{h_1}{h_2}\right)^{1/2} = 100 \times \left(\frac{150}{75}\right)^{1/2} = 141.42 \text{ mm}$$

$$F = Y_f \pi r^2 \left(1 + \frac{2\mu r}{3h}\right)$$

$$= 1100 \times \pi \times (141.42)^2 \left[1 + \frac{2 \times 0.2 \times 141.42}{3 \times 75}\right] = 86.5 \text{ MN}$$

Forging force,

24. (b)

From Taylor's tool life equation

$$50(45)^{n} = 100 (10)^{n}$$

$$(4.5)^{n} = 2$$

$$n = \frac{\log(2)}{\log(4.5)} = 0.46$$

$$C = 50(45)^{0.46} = 100(10)^{0.46} = 288.4$$

Tool life constant,

Cutting speed for maximum production rate is given as

$$V_{\text{opt}} = \frac{C}{\left[\left(\frac{1}{n}-1\right)T_{\text{tot}}\right]^n} = \frac{288.4}{\left[\left(\frac{1}{0.46}-1\right)\times2\right]^{0.46}} = \frac{288.4}{(2.34)^{0.46}} = 195.054 \text{ m/min}$$

25. (a)

Length of uncut chip,

$$l = \frac{\pi(80 + 78)}{2} = 248.186 \text{ mm}$$
Cutting ratio,

$$r = \frac{l_c}{l} = \frac{78.5}{248.186} = 0.3163$$
Shear angle,

$$\phi = \tan^{-1} \left[\frac{r \cos \alpha}{1 - r \sin \alpha} \right]$$

$$= \tan^{-1} \left[\frac{0.3163 \cos 15^{\circ}}{1 - 0.3163 \sin 15^{\circ}} \right] = \tan^{-1} (0.33276)$$

$$\phi = 18.4^{\circ}$$

26. (a)

- (i) The purpose of providing relief holes in sine bars is to reduce weight.
- (ii) The maximum angle that can be set using a sine bar is limited to 45°.

27. (d)

DE EASY

Maximum clearance=
$$HLH-LLS$$
= $30 - 0.03 - 30 + x = x - 0.03$ Minimum clearance=LLH-HLS= $30 - y - 30 - x$ = $-(x + y)$ For interference fit,Maximum clearance<0

Values	Maximum clearance	Minimum clearance
x = 0.06, y = 0.050	x - 0.03 = 0.03 > 0	-(x + y) = -0.11 < 0
x = 0.05, y = 0.045	x - 0.03 = 0.02 > 0	-(x+y) = -0.095 < 0
x = 0.05, y = 0.042	x - 0.03 = 0.02 > 0	-(x+y) = -0.092 < 0
x = 0.025, y = 0.045	x - 0.03 = -0.005 < 0	-(x + y) = -0.07 < 0

28. (b)

$$MMR = \frac{AI}{ZF\rho} \, \text{cm}^3/\text{s}$$

 $A = 27 \text{ gm}, Z = 3, F = 96500 \text{ coulombs}, \rho = \frac{2700 \times 1000}{(100)^3} \text{ gm/cm}^3$

Minimum clearance < 0

$$MMR = \frac{27 \times 70 \times 3 \times 0.8 \times 1000 \times 60}{3 \times 96500 \times 2700} \text{ cm}^3/\text{min}$$
$$= 0.348186 \text{ cm}^3/\text{min} = 348.186 \text{ mm}^3/\text{min}$$

30. (b)

For ISO metric thread,

$$2\theta = 60^{\circ}$$

 $\theta = 30^{\circ}$
For best size of rollers,
 $d = \frac{P}{2}\sec\theta$

$$=\frac{2}{2} \times \frac{1}{\cos 30^{\circ}} = 1.155 \text{ mm}$$

(included angle)