CLASS TEST

India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal| Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in
Ph: 011-45124612

ENGINEERING MECHANICS
 MECHANICAL ENGINEERING

Date of Test : 17/09/2023

ANSWER KEY

1. (b)
2. (c)
3. (c)
4. (c)
5. (b)
6. (d)
7. (b)
8. (a)
9. (d)
10. (d)
11. (d)
12. (c)
13. (d)
14. (b)
15. (c)
16. (c)
17. (a)
18. (b)
19. (c)
20. (a)
21. (c)
22. (b)
23. (a)
24. (a)
25. (c)
26. (b)
27. (c)
28. (b)
29. (b)
30. (a)

DETAILED EXPLANATIONS

1. (b)

As per given information,

$$
h=40 \mathrm{~m}, u=50 \mathrm{~m} / \mathrm{s}
$$

Let the speed be ' v ' when it strikes to the ground
Apply law of conservation of energy,

$$
\begin{aligned}
m g h+\frac{1}{2} m u^{2} & =\frac{1}{2} m v^{2} \\
m \times 10 \times 40+\frac{1}{2} \times m \times(50)^{2} & =\frac{1}{2} \times m \times v^{2} \\
400+1250 & =\frac{v^{2}}{2} \\
v & =57.44 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. (d)

As per given information,

$$
\begin{aligned}
\text { Impulse } & =\int_{t_{1}}^{t_{2}} F(t) d t=\text { Area under }(\mathrm{F}-\mathrm{t}) \text { curve } \\
\text { Impulse } & =\text { Area }(\mathrm{I}+\mathrm{II}+\mathrm{III}) \\
& =\frac{1}{2} \times 2 \times 20+4 \times 20+\frac{1}{2} \times 4 \times 20 \\
& =140 \mathrm{~kg} . \mathrm{m} / \mathrm{s} \text { or } \mathrm{Ns}
\end{aligned}
$$

3. (d)

The block is displaced 2.5 m towards left,
Let the velocity of the body be v at mean position
As dissipative force, (friction $=0$)

$$
\begin{aligned}
(\text { K.E. })_{\max } & =(\text { P.E. })_{\max } \\
\frac{1}{2} m v_{\max }^{2} & =\frac{1}{2} \times k_{1} \times x^{2}+\frac{1}{2} \times k_{2} \times x^{2} \\
m v_{\max }^{2} & =k_{1} \times x^{2}+k_{2} x^{2}
\end{aligned}
$$

Substituting the given value,

$$
100 \times m v_{\max }^{2}=40 x^{2}+60 x^{2}
$$

$$
\begin{aligned}
100 m v_{\max }^{2} & =100 x^{2} \\
v_{\max } & =x=2.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. (c)

$$
\text { Lagrangian, } \begin{aligned}
L & =T-V \\
& =v^{2} \dot{u}^{2}+2 \dot{v}^{2}-u^{2}+v^{2} \\
& =v^{2}\left(1+\dot{u}^{2}\right)+\left(2 \dot{v}^{2}-u^{2}\right)
\end{aligned}
$$

The equation of motion, using langrangian (L) for $q=u$,

$$
\begin{array}{rlrl}
\Rightarrow & \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}}\right)-\frac{\partial L}{\partial u} & =0 \\
\Rightarrow & \frac{d}{d t}\left(2 v^{2} \dot{u}\right)-(-2 u) & =0 \\
\Rightarrow & 2\left[v^{2} \ddot{u}+2 v \dot{v} \dot{u}\right]+2 u=0 \\
\Rightarrow & 2 v^{2} \ddot{u}+4 v \dot{v} \dot{u}+2 u=0
\end{array}
$$

5. (c)

Force in member AH should be zero, as the AH is corner member with only two members connected to each other at 90°. Hence, in both members AH and GH force is zero.
6. (b)

As in the given truss,

$$
F_{C I}=F_{I H}
$$

Therefore, $F_{B I}=0$ (zero force member)

Therefore, $F_{B H}=0$ (also zero force member)
7. (c)

8. (b)

Conservation of linear momentum,

$$
\begin{array}{r}
\left(m_{A} v_{A}\right)_{i}+\left(m_{B} \times v_{B}\right)_{i}=\left(m_{A}+m_{B}\right) v_{f} \\
15000 \times 1.5+(-12000 \times 0.75)=27000 \times v_{f} \\
v_{f}=0.5 \mathrm{~m} / \mathrm{s}
\end{array}
$$

9. (c)

$$
\begin{aligned}
x & =2 l \sin \frac{\theta}{2} \\
\partial x & =l \cos \frac{\theta}{2} \partial \theta \\
y & =-\frac{l}{2} \cos \frac{\theta}{2} \\
\partial y & =+\frac{l}{4} \sin \frac{\theta}{2} \partial \theta
\end{aligned}
$$

$$
+P(\partial x)+(-2 m g) \cdot \partial y=0
$$

$$
P\left(l \cos \frac{\theta}{2} \partial \theta\right)-2 m g\left(\frac{l}{4} \sin \frac{\theta}{2} \partial \theta\right)=0
$$

$$
\begin{aligned}
P l \cos \frac{\theta}{2} \partial \theta & =2 m g \times \frac{l}{4} \sin \frac{\theta}{2} \partial \theta \\
\tan \frac{\theta}{2} & =\frac{2 P}{m g} \\
\theta & =2 \tan ^{-1}\left(\frac{2 P}{m g}\right)
\end{aligned}
$$

10. (a)

Using energy conservation

$$
\begin{aligned}
(\mathrm{PE})_{A}+(\mathrm{KE})_{A} & =(\mathrm{PE})_{B}+(\mathrm{KE})_{B} \\
m g \times 12+\frac{1}{2} m \times 0^{2} & =m g \times 8+\frac{1}{2} m V_{B}^{2} \\
\frac{m g \times 4 \times 2}{m} & =V_{B}^{2} \\
V_{B} & =\sqrt{8 \times 9.81}=8.859 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

11. (b)

As per given information,

$$
\begin{array}{rlrl}
m & =30 \mathrm{~kg} ; & r & =0.2 \mathrm{~m} \\
\omega & =20 \mathrm{rad} / \mathrm{s} ; & T & =5 \mathrm{Nm} \\
F & =10 \mathrm{~N} & \\
I & =\frac{1}{2} m r^{2}=\frac{1}{2} \times 30 \times 0.2^{2}=0.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{array}
$$

Let the disk rotate an angle of θ rad.
From work energy principle

$$
\begin{aligned}
T \cdot \theta+F \times r \cdot \theta & =\frac{1}{2} \times I \times \omega^{2} \quad[\because \text { Workdone }=\text { change in energy }] \\
5 \cdot \theta+10 \times 0.2 \times \theta & =\frac{1}{2} \times 0.6 \times(20)^{2} \\
7 \cdot \theta & =120 \\
\theta & =17.14 \mathrm{rad} \\
\text { Number of revolutions } & =\frac{\theta}{2 \pi}=\frac{17.14}{2 \pi}=2.73 \mathrm{rev}
\end{aligned}
$$

12. (c)

13. (c)

$$
\begin{aligned}
C D & =A D-A C \\
& =0.5-0.5 \cos 37^{\circ} \\
& =0.1 \mathrm{~m}
\end{aligned}
$$

Applying energy conservation between B and D

$$
m g \times C D=\frac{1}{2} m v^{2} \quad \because V=\text { Velocity at } D
$$

Let

$$
\begin{aligned}
g & =10 \mathrm{~m} / \mathrm{s}^{2} \\
10 \times 0.1 & =0.5 v^{2} \\
v^{2} & =2
\end{aligned}
$$

At point ' D '

$$
\text { Tension, } \begin{aligned}
T & =\frac{m v^{2}}{r}+m g \\
T & =m\left(\frac{v^{2}}{r}+g\right)=0.1\left(\frac{2}{0.5}+10\right) \\
T & =1.4 \mathrm{~N}
\end{aligned}
$$

14. (a)

Moment of P about $\mathrm{A}=P \times(1.6+x)$

$$
\begin{aligned}
\sin 45^{\circ} & =\frac{x}{1.6} \\
x & =1.6 \sin 45^{\circ}=1.1314 \mathrm{~m} \\
M_{A} & =30 \times(1.6+1.1314)=81.9 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

15. (d)

At the section $X-X$ through 3 members of truss as shown below:

Let force along bar BD is T_{1}
Now taking moment balance about A.
$\Rightarrow \Sigma M_{A}=0$

$$
\begin{aligned}
P \times 8 & =T_{1} \cos \theta \times 2+T_{1} \sin \theta \times 4 \\
& =T_{1}\left[\frac{4 \times 2}{2 \sqrt{5}}+\frac{2 \times 4}{2 \sqrt{5}}\right] \\
P \times 8 & =T_{1} \times \frac{8}{\sqrt{5}} \\
T_{1} & =P \sqrt{5}=125 \times \sqrt{5}=279.5 \mathrm{kN}(\mathrm{~T})
\end{aligned}
$$

16. (b)

Given: $W=6000 \mathrm{~N}, r=\frac{50}{2}=25 \mathrm{~mm}, p=10 \mathrm{~mm}$

$$
\begin{aligned}
\tan \theta & =\frac{p}{\pi d}=\frac{10}{\pi \times 50}=0.06366 \\
\theta & =3.643^{\circ} \\
\tan \phi & =\mu=0.05 \\
\phi & =\tan ^{-1} 0.05=2.862^{\circ} \\
T & =W r \tan (\theta+\phi) \\
& =6000 \times 0.025 \tan (3.643+2.862) \\
& =17.1036 \mathrm{Nm}
\end{aligned}
$$

tangential force at end of lever effort

$$
=\frac{17.1036}{0.3}=57.01 \mathrm{~N}
$$

17. (a)

Apply Lami's theorem:

$$
\frac{R_{A}}{\sin \left(135^{\circ}-\theta\right)}=\frac{R_{B}}{\sin \left(135^{\circ}+\theta\right)}
$$

Given: $R_{A}=2 R_{B}$
$\Rightarrow \quad 2 \sin (135+\theta)=\sin (135-\theta)$
$\Rightarrow 2\left[\sin 135^{\circ} \cos \theta+\cos 135^{\circ} \sin \theta\right]=\left[\sin 135^{\circ} \cos \theta-\cos 135^{\circ} \sin \theta\right]$
$\Rightarrow \quad 3 \cos 135^{\circ} \sin \theta=-\sin 135^{\circ} \cos \theta$

$$
\begin{aligned}
\Rightarrow \quad \tan \theta & =-\frac{1}{3} \tan 135^{\circ} \\
\theta & =18.43^{\circ}
\end{aligned}
$$

18. (b)

Cylinder

From Newton's first law,

$$
\begin{aligned}
m_{1} g-T & =0 \\
T & =m_{1} g
\end{aligned}
$$

Pulley

$$
\frac{T}{2}=\frac{m_{1} g}{2}
$$

To cause loss of contact at A , reaction at A will be zero.

$\Sigma M_{o}=0$
$\frac{2 m g}{3} \times \frac{L}{3} \cos 60^{\circ}-\frac{m g}{3} \times \frac{L}{6} \cos 30^{\circ}-\frac{T}{2} \times \frac{L}{3} \cos 30^{\circ}=0$
$\Rightarrow \quad \frac{2 m g}{9} L \cos 60^{\circ}=\frac{m}{18} g L \cos 30^{\circ}+\frac{m_{1} g}{2} \times \frac{L}{3} \cos 30^{\circ}$
$\Rightarrow \quad \frac{2 m}{9} \cos 60^{\circ}=\frac{m}{18} \cos 30^{\circ}+\frac{m_{1}}{6} \cos 30^{\circ}$ $m_{1}=0.436 \mathrm{~m}$
19. (c)

Given,

Assume impending sliding at surface, 1

$$
F_{1}=\left(F_{1}\right)_{\max }=\left(\mu_{s}\right) N_{1}=0.2 \times 100=20 \mathrm{~N}
$$

From FBD of block 'A'
$\Sigma F_{x}=0$,

$$
\begin{aligned}
P-F_{1} & =0 \\
P & =20 \mathrm{~N}
\end{aligned}
$$

Assume impending sliding at surface force 2 only

$$
F_{2}=\left(F_{2}\right)_{\max }=\mu_{s} N_{2}=0.1 \times 300=30 \mathrm{~N}
$$

From FDB,

$$
\begin{aligned}
P-F_{2} & =0 \\
P & =30 \mathrm{~N}
\end{aligned}
$$

$P=20 \mathrm{~N}$ will cause motion to impend at surface 1 and that $P=30 \mathrm{~N}$ will cause motion to impend at surface 2 , therefore the largest force that can be applied without causing either block to move is $P=20 \mathrm{~N}$.
20. (d)

$$
\begin{aligned}
T & =\mu m g \cos \theta+m g \sin \theta \\
& =0.2 \times 10 \times \frac{1}{\sqrt{2}}+\frac{10}{\sqrt{2}} \\
& =1.2 \times \frac{10}{\sqrt{2}}=8.485 \mathrm{~N} \\
P_{\min } & =8 T=8 \times 4.855=67.88
\end{aligned}
$$

21. (b)

$$
\text { Velocity, } v=\left(3 t^{2}-6 t\right) \mathrm{m} / \mathrm{s}
$$

$$
\begin{aligned}
\frac{d s}{d t} & =v \\
s & =\left(t^{3}-3 t^{2}\right) \mathrm{m} \\
s & =0 \\
s & =-4 \mathrm{~m} \\
s & =6.125
\end{aligned}
$$

At

$$
\begin{array}{ll}
t=0 & s=0 \\
t=2 & s=-4 \mathrm{~m} \\
t=3.5 & s=6.125
\end{array}
$$

So, total distance travelled by the particle

$$
s=4+4+6.125=14.125 \mathrm{~m}
$$

22. (c)

Moment about the point ' C '

$$
\text { Position vector, } r_{C A}=-2 \hat{i}-0 \hat{j}+0 \hat{k}
$$

$$
\begin{aligned}
M_{C} & =\vec{r}_{C A} \times \vec{F} \\
& =(-2 \hat{i})[92.847(2 \hat{i}-4 \hat{j}+3 \hat{k})]
\end{aligned}
$$

$$
M_{C}=92.847\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-2 & 0 & 0 \\
2 & -4 & 3
\end{array}\right|
$$

$$
=92.847(6 \hat{j}+8 \hat{k})
$$

$$
=557.086 \hat{j}+742.776 \hat{k}
$$

Magnitude, $M_{C}=\sqrt{(557.086)^{2}+(742.776)^{2}}$

$$
M_{C}=928.47 \mathrm{Nm}
$$

$$
\begin{aligned}
& \text { (Vector method), } M_{C}=\vec{r} \times \vec{F} \\
& \text { Force vector, } \vec{F}=500 \frac{\overrightarrow{A B}}{|\overrightarrow{A B}|} \\
& =500\left(\frac{2 \hat{i}-4 \hat{j}+3 k}{\sqrt{(2)^{2}+(-4)^{2}+(3)^{2}}}\right) \\
& =92.847(2 \hat{i}-4 \hat{j}+3 k)
\end{aligned}
$$

23. (a)

Let momentum, $P=a t^{2}+b t+c$

$$
\text { force, } F=\frac{d P}{d t} \text { at } t=0 \text { is } 80 \mathrm{~N}
$$

$$
\text { Acceleration }=\frac{F}{m}=\frac{200 t+80}{5}=40 t+16
$$

$$
\text { Acceleration }=\frac{d v}{d t}
$$

$$
\begin{aligned}
d v & =(40 t+16) d t \\
\int_{0}^{v} d v & =\int_{0}^{5}(40 t+16) d t \\
v-0 & =\left[40 \times \frac{t^{2}}{2}+16 t\right]_{0}^{5} \\
v & =40 \times \frac{5^{2}}{2}+16 \times 5 \\
v & =25 \times 20+80 \\
v & =580 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

24. (b)

$$
\sin \theta=\frac{r}{L}
$$

(a) Tension T along the string
(b) The weight mg vertically downwards.

In radial direction,

$$
T \sin \theta=\frac{m v^{2}}{r}
$$

In vertical direction, $T \cos \theta=m g$
Equation (i) and (ii)

$$
\tan \theta=\frac{v^{2}}{r g}
$$

$$
\begin{aligned}
v & =\sqrt{(r g \tan \theta)}=\sqrt{(r g) \times\left(\frac{r}{\sqrt{L^{2}-r^{2}}}\right)} \\
v & =\frac{r \sqrt{g}}{\left(L^{2}-r^{2}\right)^{1 / 4}} \\
\text { By equation (ii), } \quad T & =\frac{m g}{\cos \theta}=\frac{m g L}{\left(\sqrt{L^{2}-r^{2}}\right)} \\
T & =\frac{m g L}{\left(L^{2}-r^{2}\right)^{1 / 2}}
\end{aligned}
$$

25. (b)

For a body under three forces to be in equilibrium, these forces must be coplanar and concurrent. So, force P, weight of cylinder W and reaction at $B\left(R_{B}\right)$ passes through the same point that's the upper most point of cylinder.

In $\triangle O B D$,

$$
\begin{aligned}
O B^{2} & =O D^{2}+D B^{2} \\
2.5^{2} & =(2.5-0.5)^{2}+D B^{2} \\
D B^{2} & =2.25 \\
D B & =1.5 \mathrm{~m} \\
\text { In } \triangle B C D, \quad \tan \theta & =\frac{2.5+2}{1.5}=\frac{4.5}{1.5}=3 \\
\theta & =71.565^{\circ} \\
\frac{W}{P} & =\tan \theta \\
\Rightarrow \quad \tan 71.565^{\circ} & =\frac{800}{P} \\
\Rightarrow \quad P & =\frac{800}{3}=266.67 \mathrm{~N}
\end{aligned}
$$

Alternate: Taking moment about B,

$$
\begin{aligned}
P \times C D & =W \times D B \\
P & =\frac{800 \times 1.5}{4.5} \\
P & =\frac{800}{3}=266.67 \mathrm{~N}
\end{aligned}
$$

26. (d)

Cylinder rolls without slipping with angular speed $\omega=\frac{v}{r}$ about its axis.
By energy conservation,

$$
\begin{aligned}
(\mathrm{KE})_{1-1}+(\mathrm{PE})_{1-1} & =(\mathrm{KE})_{2-2}+(\mathrm{PE})_{2-2} \\
0+m g l \sin \theta & =\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}+0 \\
m g l \sin \theta & =\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{1}{2} m R^{2}\right) \omega^{2}=\frac{1}{2} m v^{2}+\frac{1}{4} m v^{2} \\
m g l \sin \theta & =\frac{3}{4} m v^{2} \\
v & =\sqrt{\frac{4}{3} g l \sin \theta}=\sqrt{\frac{4}{3} \times 10 \times 2 \times \sin 30^{\circ}} \\
v & =3.65 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

27. (c)

$$
\begin{aligned}
& F \propto v^{3} \\
& F=k v^{3} \\
& a=\frac{F}{m}=\frac{k v^{3}}{m}
\end{aligned}
$$

We know that,

$$
\text { hat, } \begin{aligned}
a & =\frac{d v}{d t} \\
\frac{d v}{d t} & =\frac{k v^{3}}{m} \\
\frac{1}{v^{3}} d v & =\left(\frac{k}{m}\right) d t \\
{\left[\frac{v^{-2}}{-2}\right]_{u}^{v} } & =\left(\frac{k}{m}\right) \int_{0}^{t} d t \\
-\frac{1}{2}\left[\frac{1}{v^{2}}\right]_{u}^{v} & =\left(\frac{k}{m}\right)[t]_{0}^{t} \\
-\frac{1}{2}\left[\frac{u^{2}-v^{2}}{v^{2} u^{2}}\right] & =\left(\frac{k}{m}\right) t \\
t & \alpha\left(\frac{u^{2}-v^{2}}{v^{2} u^{2}}\right)
\end{aligned}
$$

28. (a)

Given data: $m=8.4 \mathrm{~kg}, \omega=6.9 \mathrm{rad} / \mathrm{s}, F=6.6 \mathrm{~N}, M=59 \mathrm{Nm}, L=4 \mathrm{~m}, \omega_{\theta=90^{\circ}}=$?
Moment of Inertia of rod about hinge O,

$$
I_{O}=\frac{m L^{2}}{12}+m \times\left(\frac{L}{2}\right)^{2}=\frac{m L^{2}}{3}=\frac{8.4 \times 4 \times 4}{3}=44.8 \mathrm{~kg} \mathrm{~m}^{2}
$$

By conservation of energy:

$$
\begin{aligned}
m g h_{c m}+(M+F \times L) \Delta \theta & =\frac{1}{2} I_{0}\left(\omega_{1}^{2}-\omega_{0}^{2}\right) \\
\text { For } \theta & =90^{\circ}, h_{c m}=2 \mathrm{~m} \\
(8.4 \times 9.81 \times 2)+(59+6.6 \times 4) & \times \frac{\pi}{2}=\frac{1}{2} \times(44.8)\left[\omega_{1}^{2}-6.9^{2}\right] \\
\frac{298.954 \times 2}{44.8} & =\omega_{1}^{2}-6.9^{2} \\
\omega_{1}^{2} & =60.9562 \\
\omega_{1} & =7.807 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

29. (c)

$$
\text { Normal reaction, } \begin{aligned}
N & =\mathrm{mg} \cos 30^{\circ} \\
\text { friction force, } f & =\mu \mathrm{N} \\
f & =\mu \mathrm{mg} \cos 30^{\circ}
\end{aligned}
$$

Now, resultant force in downward direction will be $=\left(\mathrm{mg} \sin 30^{\circ}-\mu \mathrm{mg} \cos 30^{\circ}\right)$
We known that,

Given,

$$
\begin{aligned}
a & =\frac{F}{m}=\frac{m\left(g \sin 30^{\circ}-\mu g \cos 30^{\circ}\right)}{m} \\
\frac{d v}{d t} & =g(0.5-0.866 \times 3 x) \\
v \frac{d v}{d x} & =g(0.5-0.866 \times 3 x)
\end{aligned}
$$

$$
v_{i}=0, v_{f}=0
$$

Integrating,

$$
\begin{aligned}
\int_{0}^{0} v d v & =g \int_{0}^{x}(0.5-0.866 \times 3 x) d x \\
{\left[\frac{v^{2}}{2}\right]_{0}^{0} } & =g\left[0.5 x-\frac{0.866}{2} \times 3 x^{2}\right]_{0}^{x} \\
0 & =0.5 x-0.433 \times 3 x^{2} \\
0.433 \times 3 x^{2} & =0.5 x \\
x & =\frac{0.5}{0.433 \times 3} \\
x & =0.3849 \mathrm{~m}
\end{aligned}
$$

30. (a)

Given that, $m=20 \mathrm{~kg}, r_{i}=0.1 \mathrm{~m}=R, r_{0}=0.3 \mathrm{~m}=3 R$
Cross-section area $=\pi\left[(3 R)^{2}-R^{2}\right]=8 \pi R^{2}$
Mass of small strip of thickness ' $d r$ ' at a distance ' r ' from centre.

$$
d m=\frac{m \times 2 \pi r d r}{8 \pi R^{2}}
$$

We know that,

$$
\begin{aligned}
I & =\int_{R}^{3 R} d m \cdot r^{2} \\
I & =\int_{R}^{3 R} \frac{m \times 2 \pi r d r \times r^{2}}{8 \pi R^{2}}=\frac{m}{4 R^{2}} \times\left[\frac{r^{4}}{4}\right]_{R}^{3 R} \\
& =\frac{m}{4 \times 4 R^{2}} \times\left(81 R^{4}-R^{4}\right)=\frac{20}{4} m R^{2}=5 m R^{2} \\
(\text { K.E. })_{\text {total }} & =(\text { K.E. })_{\text {rotational }}+(\text { K.E. })_{\text {translation }} \\
\text { K.E. } & =\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& =\frac{1}{2} m \times 9 R^{2} \omega^{2}+\frac{1}{2} I \omega^{2}=\frac{9}{2} m R^{2} \omega^{2}+\frac{5}{2} m R^{2} \omega^{2} \\
\text { K.E. } & =7 m R^{2} \omega^{2} \\
62.5 & =7 \times 20 \times(0.1)^{2} \times \omega^{2} \\
\omega & =6.6815 \mathrm{rad} / \mathrm{s} \\
v & =3 R \omega=3 \times 0.1 \times 6.6815
\end{aligned}
$$

Velocity of centre of mass, $v=2 \mathrm{~m} / \mathrm{s}$
Note: for rolling without slipping, $v=r \omega, v=3 \mathrm{R} \omega$

