

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

SOIL MECHANICS

CIVIL ENGINEERING

Date of Test : 30/08/2023

ANSWER KEY

1. (c)
2. (c)
3. (a)
4. (a)
5. (c)
6. (b)
7. (b)
8. (d)
9. (a)
10. (b)
11. (b)
12. (d)
13. (d)
14. (b)
15. (a)
16. (c)
17. (b)
18. (c)
19. (b)
20. (c)
21. (b)
22. (b)
23. (d)
24. (a)
25. (a)
26. (c)
27. (a)
28. (c)
29. (d)
30. (c)

DETAILED EXPLANATIONS

1. (c)

Coefficient of curvature, $C_{c}=1.2$
Now,

$$
C_{\mathrm{c}}=\frac{D_{30}^{2}}{D_{60} \times D_{10}}
$$

$\Rightarrow \quad 1.2=\frac{(3.2)^{2}}{D_{60} \times 0.6}$
$\Rightarrow \quad D_{60}=\frac{3.2^{2}}{1.2 \times 0.6}=14.22 \mathrm{~mm}$
So, $\quad C_{u}=\frac{D_{60}}{D_{10}}=\frac{14.22}{0.6}=23.70$
$\therefore \quad C_{\mathrm{u}}>6$ and C_{c} lies between 1 and 3 .
Hence, the soil is well graded sand.
2. (b)

Critical hydraulic gradient,

$$
\begin{array}{rlrl}
& & i_{c r} & =\frac{G-1}{1+e}=(G-1)(1-n) \\
\Rightarrow & i_{c r} & =(2.7-1)(1-0.3) \\
\Rightarrow & & =1.19 \\
& & i_{\text {allowable }} & =\frac{1.19}{\mathrm{FOS}} \\
\Rightarrow & & \\
\therefore & & i_{\text {allowable }} & =\frac{1.19}{1.5}=0.7933 \\
\Rightarrow & (2+x) \times 0.7933 & =1.90 \\
\Rightarrow & 2+x & =2.395 \\
\Rightarrow & x & =0.395 \mathrm{~m} \simeq 0.4 \mathrm{~m}
\end{array}
$$

3. (b)

For Taylor's square root of time fitting method,
Degree of consolidation, $\quad U=90 \%$
For

$$
\begin{aligned}
U & =90 \%>60 \% \\
T_{v} & =1.781-0.933 \times \log _{10}(100-\% U) \\
& =1.781-0.933 \times \log _{10}(100-90) \\
& =0.848
\end{aligned}
$$

4. (c)

Pore water pressure 1 m above G.W.T. is

$$
\begin{array}{ll}
\text { For } h=1 \mathrm{~m}, & u=-\gamma_{\mathrm{w}} h \\
\Rightarrow & u=-10 \times 1 \\
& u=-10 \mathrm{kN} / \mathrm{m}^{2}
\end{array}
$$

5. (b)

$$
\begin{array}{lrl}
\text { Given, } & U_{r} & =30 \% \\
& & U \\
\text { We know, } & (1-U) & =\left(1-U_{r}\right)\left(1-U_{v}\right) \\
\Rightarrow & (1-0.7) & =(1-0.3)\left(1-U_{v}\right) \\
\Rightarrow & U_{v} & =1-\frac{0.3}{0.7}=\frac{4}{7} \\
\Rightarrow & U_{v} & =57.14 \%
\end{array}
$$

6. (c)

For normally consolidated clay,
Given,

$$
\tau_{\mathrm{f}}=\bar{\sigma} \tan 30^{\circ}
$$

$\Rightarrow \quad \phi=30^{\circ}$
Now,

$$
\begin{array}{rlrl}
& & \bar{\sigma}_{1} & =69 \tan ^{2}\left(45^{\circ}+\frac{30^{\circ}}{2}\right) \\
\Rightarrow & \bar{\sigma}_{1} & =207 \mathrm{kN} / \mathrm{m}^{2} \\
\therefore \quad & \left(\Delta \bar{\sigma}_{d}\right)_{f} & =\bar{\sigma}_{1}-\bar{\sigma}_{3}=207-69=138 \mathrm{kN} / \mathrm{m}^{2}
\end{array}
$$

7. (c)

Friction circle method:

- Based on total stress analysis.
- In this method it is assumed that the resultant force R on the rupture surface is tangential to a circle of radius $R \sin \phi$, which is concentric with trial slip circle.

8. (b)

The ratio of τ_{ff} and σ_{ff} is maximum on the plane of maximum obliquity and not on the plane of maximum shear stress.
9. (d)

To prevent possibility of erosion and piping, filter must have grain sizes that satisfy following requirements:
(i) $\frac{D_{15 \text { (filter) }}}{D_{85(\text { protected material })}}<5$

It ensures that no significant invasion of particles from the protected material to the filter.
(ii) $4<\frac{D_{15 \text { (filter) }}}{D_{15 \text { (protected material) }}}<20$

It ensures that sufficient head is lost in filter without build-up of seepage pressure (specifies the lower limit of material.
(iii) $\frac{D_{50(\text { filter })}}{D_{50(\text { protected material })}}<25$

This is the additional guideline for the selection of material.
10. (b)

$$
p_{a}=K_{a}(\gamma z)
$$

where K_{a} is coefficient of active earth pressure

$$
\begin{array}{ll}
\Rightarrow & 60=K_{a} \times 18 \times 10 \\
\Rightarrow & K_{a}=\frac{1}{3} \\
\text { Now, } & K_{a}=\frac{1-\sin \phi}{1+\sin \phi}=\frac{1}{3} \\
\Rightarrow & \phi=30^{\circ}
\end{array}
$$

11. (b)
$\begin{array}{ll}\text { At liquid limit, } & w_{L}=60 \%, V_{L}=20 \mathrm{cc}, S=1 \\ \text { At shrinkage limit, } & w_{S}=28 \%, V_{S}=?, S=1\end{array}$
We know that,

$$
\gamma_{\mathrm{d}}=\frac{G \gamma_{w}}{1+e}=\frac{G \gamma_{w}}{1+\frac{w G}{S}}
$$

and

$$
\gamma_{\mathrm{d}}=\frac{W_{s}}{V}
$$

So, at liquid limit, $\quad \frac{W_{s}}{20}=\frac{G \gamma_{w o}}{1+0.6 \times 2.7}$
At shrinkage limit, $\quad \frac{W_{s}}{V}=\frac{G \gamma_{w}}{1+0.28 \times 2.7}$
From eq. (i) and (ii)

$$
\begin{array}{rlrl}
& & \frac{1+0.28 \times 2.7}{V} & =\frac{1+0.6 \times 2.7}{20} \\
\Rightarrow & \frac{V}{20} & =\frac{1+0.28 \times 2.7}{1+0.6 \times 2.7}=\frac{1.756}{2.62} \\
\Rightarrow & V & =13.40 \mathrm{cc}
\end{array}
$$

12. (a)

For confined aquifer,
By Dupit's equation, $k=\frac{2.303 Q \log _{10}\left(\frac{R}{r_{w}}\right)}{2 \pi D\left(H-h_{w}\right)}$
Given, $Q=40 \mathrm{l} / \mathrm{sec}=0.04 \mathrm{~m}^{3} / \mathrm{sec}, R=300 \mathrm{~m}, r_{w}=0.3 \mathrm{~m}, D=5 \mathrm{~m}, H=16 \mathrm{~m}, h_{\mathrm{w}}=12 \mathrm{~m}$

Hence,

$$
\begin{aligned}
k & =\frac{2.303 \times 0.04 \times \log \left(\frac{300}{0.3}\right)}{2 \pi \times 5 \times(16-12)} \\
& =2.199 \times 10^{-3} \mathrm{~m} / \mathrm{sec} \simeq 2.2 \mathrm{~mm} / \mathrm{sec}
\end{aligned}
$$

13. (a)

Mass of paraffin wax, $M_{P}=584.3-575.8=8.5 \mathrm{gm}$
Weight of soil, $\quad W=575.8$ gm
Volume of paraffin wax, $V_{p}=\frac{M_{p}}{G_{p} \times \rho_{w}}=\frac{8.5}{0.85 \times 1}=10 \mathrm{ml}$
Volume of soil,

$$
\begin{equation*}
V=342-10=332 \mathrm{ml} \tag{p}
\end{equation*}
$$

Bulk density,

$$
\rho_{\mathrm{b}}=\frac{W}{V}=1.734 \mathrm{~g} / \mathrm{cc}
$$

$$
(\because 1 \mathrm{ml}=1 \mathrm{cc})
$$

\therefore Dry density, $\quad \rho_{d}=\frac{\rho_{b}}{1+w}=\frac{1.734}{1+0.2}=1.445 \mathrm{~g} / \mathrm{cc}$
14. (d)

The passive earth pressure coefficient is

$$
k_{p}=\frac{1+\sin \phi}{1-\sin \phi}=\frac{1+0.259}{1-0.259}=1.699
$$

The passive pressure at a depth z is given by,

$$
p_{p}=k_{p} \gamma z+2 C \sqrt{k_{p}}
$$

At $z=0 \mathrm{~m}, \quad \quad p_{p}=2 \times 15 \times \sqrt{1.699}=39.1 \mathrm{kN} / \mathrm{m}^{2}$
At $z=8 \mathrm{~m}$,

$$
p_{p}=18 \times 1.699 \times 8+2 \times 15 \sqrt{1.699}
$$

$$
=283.76 \mathrm{kN} / \mathrm{m}^{2}
$$

\therefore Total passive thrust, $\quad p_{p}=\frac{1}{2}[39.1+283.76] \times 8=1291.44 \mathrm{kN} / \mathrm{m}$

15. (d)

For 50\% consolidation,

$$
\begin{array}{ll}
& T_{V}=\frac{C_{V} t}{h^{2}} \\
\Rightarrow & C_{V}=\left(\frac{T_{V} \times h^{2}}{t}\right)
\end{array}
$$

In the laboratory test,

$$
\begin{aligned}
T_{V 50} & =\frac{\pi}{4} \times 0.5^{2}=0.196 \\
t & =15 \mathrm{~min} \\
h & =\frac{H}{2}=\frac{3}{2}=1.5 \mathrm{~cm} \quad[\because \text { Double drainage }]
\end{aligned}
$$

$$
\text { So, } \quad C_{V}=\frac{T_{V} \times h^{2}}{t}=\frac{0.196 \times 1.5^{2}}{15}
$$

$$
\therefore \quad=0.0294 \mathrm{~cm}^{2} / \mathrm{min}
$$

In the case of actual building,

$$
\begin{array}{ll}
& h=\frac{8 \times 100}{2}=400 \mathrm{~cm} \\
\therefore & t=\frac{T_{V} \times h^{2}}{C_{V}}=\frac{0.196 \times 400^{2}}{0.0294 \times 60 \times 24} \\
\Rightarrow & t=740.74 \text { days } \simeq 741 \text { days }
\end{array}
$$

16. (c)

Given, $\gamma_{b}=19 \mathrm{kN} / \mathrm{m}^{3}, w_{1}=17 \%$
So, dry density, $\quad \gamma_{d}=\frac{\gamma_{b}}{1+w}=\frac{19}{1+0.17}=16.24 \mathrm{kN} / \mathrm{m}^{3}$
Also, $\quad \gamma_{d}=\frac{G \gamma_{w}}{1+e}=\frac{2.7 \times 9.81}{1+e}=16.24$

$$
\Rightarrow \quad e=\frac{2.7 \times 9.81}{16.24}-1=0.631
$$

When the soil is fully saturated, $S=1$,

$$
\therefore \quad S \cdot e=w \cdot G
$$

So, new moisture content,

$$
w_{2}=\frac{S \cdot e}{G}=\frac{1 \times 0.631}{2.7}=0.2337 \text { or } 23.37 \%
$$

\therefore Additional moisture content required

$$
=23.37-17=6.37 \%
$$

17. (d)

For constant head permeability test,

$$
k=\frac{Q}{A i}=\frac{626}{\frac{\pi}{4} \times 7.5^{2} \times 60 \times \frac{24.7}{18}}=1.72 \times 10^{-1} \mathrm{~cm} / \mathrm{s}
$$

Now, Discharge velocity, $V=k i$

$$
=1.72 \times 10^{-1} \times \frac{24.7}{18}=0.236 \mathrm{~cm} / \mathrm{s}
$$

Seepage velocity, $\quad \frac{V}{n}=\frac{0.236}{0.44}$

$$
V_{s}=0.536 \mathrm{~cm} / \mathrm{s}
$$

18. (c)

$$
\begin{aligned}
q_{u(\text { undisturbed })} & =\frac{T}{\pi d^{2}\left[\frac{h}{2}+\frac{d}{6}\right]}=\frac{35 \times 1000}{\pi \times 60^{2} \times\left[\frac{100}{2}+\frac{60}{6}\right]} \\
& =0.05158 \mathrm{~N} / \mathrm{mm}^{2}=51.58 \mathrm{kN} / \mathrm{m}^{2} \\
q_{u(\text { remoulded })} & =\frac{5 \times 1000 \times 10^{3}}{\pi \times 60^{2}\left[\frac{100}{2}+\frac{60}{6}\right]} \mathrm{kN} / \mathrm{m}^{2}=7.368 \mathrm{kN} / \mathrm{m}^{2} \\
\therefore \quad \text { Sensitivity of the clay } & =\frac{q_{u(\text { undisturbed })}}{q_{u(\text { remoulded })}}=\frac{51.58}{7.368}=7
\end{aligned}
$$

19. (a)

$$
\begin{aligned}
\phi & =30^{\circ} \\
\gamma_{\mathrm{sat}} & =20 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

FOS against failure $=$

$$
\frac{\gamma_{\mathrm{sub}}}{\gamma_{\mathrm{sat}}} \times \frac{\tan \phi}{\tan \beta}=\frac{(20-10)}{20} \times \frac{\tan \left(30^{\circ}\right)}{\tan \left(14^{\circ}\right)}=1.16
$$

20. (a)

- Experimentally it has been shown that the compression of soil layer does not stop when excess pore water pressure has dissipated to zero but continues at a gradually decreasing rate at constant effective stress. This phenomenon is known as secondary compression.
- Since, secondary consolidation is not governed by the dissipation of excess hydrostatic pressure, Terzaghi's theory of consolidation cannot be applied to find the rate of secondary consolidation.

21. (b)

As per Tergazhi, for rectangular footing
Ultimate bearing capacity,

$$
q_{u}=\left(1+0.3 \frac{B}{L}\right) c N_{c}+\gamma \cdot D_{f} N_{q}+\left(1-0.2 \frac{B}{L}\right) \cdot \frac{1}{2} B \gamma N_{\gamma}
$$

Now, $C=0$,

So,

$$
\begin{aligned}
q_{u} & =18 \times 1 \times 24+\left(1-0.2 \times \frac{1.5}{3.0}\right) \times 1.5 \times \frac{1}{2} \times 18 \times 20 \\
& =432+243=675 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Net ultimate bearing capacity,

$$
q_{n u}=q_{u}-\gamma \cdot D_{f}=675-18 \times 1=657 \mathrm{kN} / \mathrm{m}^{2}
$$

Net safe bearing capacity,

$$
q_{n s}=\frac{q_{n u}}{\operatorname{FOS}}=\frac{657}{3}=219 \mathrm{kN} / \mathrm{m}^{2}
$$

22. (b)

Given, $W=80 \mathrm{kN}, H=1.5 \mathrm{~m}=150 \mathrm{~cm}, S=4 \mathrm{~mm}=0.4 \mathrm{~cm}, C=2.5 \mathrm{~cm}$ for drop hammer

Hence,

$$
Q_{c}=\frac{W H}{(S+C) F O S}=\frac{80 \times 150}{(0.4+2.5) 6}=689.66 \mathrm{kN} \simeq 689 \mathrm{kN}(\text { say })
$$

23. (a)

As per Skempton,

$$
\begin{aligned}
q_{n u} & =C N_{C} \quad \text { (where } C \text { is the cohesion) } \\
\mathrm{UCS} & =100 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Given,
$\Rightarrow \quad C=\frac{\text { UCS }}{2}=50 \mathrm{kN} / \mathrm{m}^{2}$
For $\frac{D_{f}}{B} \geq 2.5,\left[\frac{D_{f}}{B}=\frac{3}{1}=3\right]$
N_{c} for rectangular footing

$$
\begin{aligned}
& =7.5\left(1+\frac{0.2 B}{L}\right) \leq 9 \\
& =7.5\left(1+\frac{0.2 \times 1}{3}\right)=8 \leq 9 \\
q_{n u} & =8 \times 50=400 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

24. (d)

$$
\begin{aligned}
& K_{P_{1}}=\frac{1+\sin \phi}{1-\sin \phi}=3 \\
& K_{P_{2}}=1
\end{aligned}
$$

$$
\left(\because \quad \phi_{\text {clay }}=0^{\circ}\right)
$$

$$
p_{B}=K_{P_{1}} \gamma_{1} z_{1}=3 \times 20 \times 2=120 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
p_{B}^{\prime}=K_{p_{2}} \gamma_{1} z_{1}+2 c \sqrt{K_{P_{2}}}
$$

$$
=1 \times 20 \times 2+2 \times 30 \sqrt{1}=100 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
p_{c}=K_{p 2} \times \gamma_{1} z_{1}+K_{p_{2}} \gamma_{2} z_{2}+2 c \sqrt{K_{P_{2}}}
$$

$$
=1 \times 20 \times 2+1 \times 18 \times 3+2 \times 30 \sqrt{1}=154 \mathrm{kN} / \mathrm{m}^{2}
$$

Therefore total passive earth pressure per unit length of the wall is

$$
\begin{aligned}
p_{a} & =\frac{1}{2} \times 120 \times 2+\frac{1}{2}(154+100) \times 3 \\
& =120+381=501 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

25. (c)

$$
\begin{aligned}
\phi & =16^{\circ} \\
k_{a} & =\frac{1-\sin \phi}{1+\sin \phi}=\frac{1-\sin \left(16^{\circ}\right)}{1+\sin \left(16^{\circ}\right)}=0.57
\end{aligned}
$$

At A:

$$
\begin{aligned}
& p_{a}=k_{a} \cdot \bar{\sigma}_{z}-2 c \sqrt{k_{a}} \quad(\because c=0) \\
& p_{a}=k_{a} \cdot \bar{\sigma}_{z}=0.57 \times(4.5+20 \times 6)=70.965 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

26. (b)

$$
\begin{aligned}
\gamma_{\mathrm{sat}} & =\frac{G+e}{1+e} \times \gamma_{w}=\frac{2.65+1}{1+1} \times 9.81=17.9 \mathrm{kN} / \mathrm{m}^{3} \\
\gamma^{\prime} & =\gamma_{\mathrm{sat}}-\gamma_{w}=17.9-9.81=8.1 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

For sudden drawdown

$$
\gamma=\gamma_{\mathrm{sat}}
$$

$$
\begin{aligned}
& \phi_{w}=\frac{\gamma^{\prime}}{\gamma_{s a t}} \times \phi_{u}=\frac{8.1}{17.9} \times 15=6.8^{\circ} \\
& F_{C}=\frac{C_{u}}{S_{n} \times \gamma_{s a t} \times H}=\frac{12}{0.126 \times 17.9 \times 5}=1.06
\end{aligned}
$$

27. (a)

- Equivalent point load method is an approximate method.
- Boussinesq's equation can't be applied to sedimentary deposits.
- West

28. (c)

$$
\begin{aligned}
& T_{v}=C_{v} \frac{t}{d^{2}} \\
& T_{v}=\frac{k}{m_{v} \gamma_{w}} \times \frac{t}{d^{2}}
\end{aligned}
$$

\because Percentage consolidation required is same in both the cases.

$$
\begin{aligned}
& \therefore \\
& \frac{k}{m_{v} \gamma_{w}}=T_{v}{ }^{\prime} \\
& \frac{t}{d^{2}}=\frac{k^{\prime}}{m_{v}{ }^{\prime} \gamma_{w}} \times \frac{t}{d^{2}} \\
& \frac{k}{m_{v}} \times \frac{15}{d^{2}}=\frac{3 k}{4 m_{v}} \times \frac{t}{(d / 2)^{2}} \\
& 15=3 t \\
& t=5 \text { years }
\end{aligned}
$$

29. (a)

$$
\begin{aligned}
i & =\frac{G-1}{1+e} \\
n & =0.3 \\
\therefore \quad e & =\frac{n}{1-e}=\frac{0.3}{1-0.3}=\frac{0.3}{0.7}=0.43 \\
& G
\end{aligned}
$$

30. (c)

$$
\text { Given, initial area, } \begin{aligned}
A_{0} & =18 \mathrm{~cm}^{2} \\
\text { Failure strain } & =25 \%=0.25 \\
\text { Corrected area } & =\frac{A_{0}}{1-\varepsilon}=\frac{18}{1-0.25} \\
& =\frac{18}{0.75}=24 \mathrm{~cm}^{2}
\end{aligned}
$$

