

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

REINFORCED CEMENT CONCRETE

CIVIL ENGINEERING

Date of Test: 20/08/2023

ANSWER KEY >

1.	(b)	7.	(c)	13.	(d)	19.	(a)	25.	(d)
2.	(d)	8.	(a)	14.	(a)	20.	(c)	26.	(d)
3.	(b)	9.	(c)	15.	(c)	21.	(b)	27.	(b)
4.	(c)	10.	(d)	16.	(b)	22.	(d)	28.	(a)
5.	(d)	11.	(a)	17.	(a)	23.	(c)	29.	(b)
6.	(b)	12.	(b)	18.	(a)	24.	(b)	30.	(d)

Detailed Explanations

1. (b)

As per IS-456:2000; Table - 3 and table -16, nominal cover \neq 30 mm. and according to clause 26.4.2.1 of IS-456: 2000, nominal cover \neq 40 mm for column any case. So, here, answer will be 40 mm.

- 2. (d)
- 3. (b)

As per yield line theory, (Inelastic analysis)

$$BM_{max} = \frac{w_u R^2}{6}$$

$$12 = \frac{w_u \times 2^2}{6}$$

$$w_u = 18 \text{ kN/m}^2$$

$$Working load = \frac{18}{1.5} = 12 \text{ kN/m}^2$$

Note: As per elastic theory, $BM_{max} = \frac{3}{16}w_u R^2$

- 4. (c)
- 5. (d)

Side face reinforcement is provided when depth ≥ 750 mm (Without torsion) or Depth = 450 mm (with torsion)

6. (b)

We know, maximum diameter of steel = $\frac{\text{Slab thickness}}{8}$

For minimum thickness of slab, we have to use minimum size of reinforcement.

So, Minimum thickness = $8 \times (\text{min. dia of } r/f) = 8 \times 12 = 96 \text{ mm}$

7. (c)

The straight length of the lap shall not be less than 15ϕ or 200 mm. (Refer Cl. 2.6.2.5.1 of **IS** 456:2000)

8. (a)

Bearing strength for base plate using WSM = $0.25 \times f_{ck}$ (Cl. 34.4 of **IS 456 : 2000**) = 0.25×25 = 6.25 N/mm^2

9. (c)

The anchorage value of bend shall be taken as 4 times the diameter of the bar for each 45° bend but in any case must, it must not exceed 16 times the bar diameter.

Thus, for L-shaped bend, it will be 8 times the diameter of bar.

10. (d)

11. (a)

Given: B = 200 mm, d = 500 mm, $l_{\text{eff}} = 6$ mm, Total load = 20 kN/m Factored load = $1.5 \times 20 = 30$ kN/m

$$(BM)_{max} = \frac{wl_{eff}^2}{8} = \frac{30 \times 6^2}{8} = 135 \text{ kNm}$$

Maximum bending moment capacity of balanced beam, for Fe415,

$$M_{cr} = 0.138 f_{ck} B d^2$$

= 0.138 × 25 × 200 × 500²
= 172.5 × 10⁶ N-m = 172.5 kN-m
(BM)_{max} < M_{cr}

∴ URS is provided

12. (b)

Loss of stress due shrinkage of concrete in post-tensioned PSC beam

$$= \frac{\left(2 \times 10^{-4}\right) E_{s}}{\log \left(T + 2\right)} = \frac{\left(2 \times 10^{-4}\right) \times \left(2 \times 10^{5}\right)}{\log \left(6 + 2\right)} = 44.29 \text{ N/mm}^{2}$$

$$\% loss = \frac{44.29}{1000} \times 100 = 4.43\%$$

13. (d)

At initial stage, no losses are considered and only DL are considered.

At mid span, moment due to dead load:

$$M_d = \frac{wl^2}{8} = \frac{10 \times 6^2}{8} = 45 \text{ kNm}$$
STress at bottom of mid span = $\frac{P}{A} + \frac{\text{Pe}}{Z} - \frac{M_d}{Z}$

$$= \frac{500 \times 10^3}{300 \times 500} + \frac{500 \times 10^3 \times 100}{\frac{300 \times 500^2}{6}} - \frac{45 \times 10^6}{\frac{300 \times 500^2}{6}}$$

$$= 3.33 + 4 - 3.6 = 3.73 \text{ N/mm}^2$$

14. (a)

Given: B = 250 mm

Factored Moment, $M_u = 1.5 \times 45 = 67.5 \text{ kNm}$

and we know,

$$M_u \lim = 0.148 f_{ck} B d^2 \qquad \text{[Fe 250 is used]}$$

$$\Rightarrow \qquad 67.5 \times 10^6 = 0.148 \times 20 \times 250 \times d^2$$

$$\Rightarrow \qquad d = 302 \text{ mm}$$

15. (c)

Equivalent shear,
$$V_e = V_u + \frac{1.6 T_u}{b}$$

Here,

$$V_u = 0$$

$$V_e = 1.6 \times \frac{50 \times 10^3}{300} = 266.67 \approx 267 \,\text{kN}$$

16. (b)

Load on the column = 1250 kN

Weight of foundation@ 10% of column load = 125 kN

$$\therefore$$
 Total load on the soil = 1250 + 125 = 1375 kN

$$\therefore \qquad \text{Area of foundation} = \frac{1375}{100} = 13.75 \,\text{m}^2$$

Depth of foundation
$$= \frac{q}{\gamma} \left(\frac{1 - \sin \phi}{1 + \sin \phi} \right)^2$$
$$= \frac{100}{18} \left(\frac{1 - \sin 30^{\circ}}{1 + \sin 30^{\circ}} \right)^2$$
$$= 0.6173 \text{ m}$$
$$\approx 0.62 \text{ m}$$

17. (a)

Total vertical load, W = 300 kN

Distance of point of application of the resultant force from the heel end = 2 m

So, eccentricity,
$$e = 2 - \frac{b}{2} = 2 - \frac{3.5}{2} = 0.25 \text{ m}$$

$$\frac{b}{6} = \frac{3.5}{6} = 0.583 \text{ m}$$

$$e < \frac{b}{6}$$

:.

Extreme pressure intensity at the base,

$$= \frac{W}{b} \left[1 \pm \frac{6e}{b} \right]$$

$$= \frac{300}{3.5} \left[1 \pm \frac{6 \times 0.25}{3.5} \right]$$

$$= 122.449 \text{ kN/m}^2 \text{ and } 48.98 \text{ kN/m}^2$$

$$\approx 122 \text{ kN/m}^2 \text{ and } 49 \text{ kN/m}^2$$

18. (a)

or,

Critical section for shear shall be taken at a distance of d/2 from periphery of column/drop panel.

19. (a)

For main reinforcing bars

Maximum spacing =
$$3d$$
 or 300 mm whichever is less = 3×90 or 300 mm = 270 mm

For distribution bars:

Maximum spacing = 5d or 450 mm = 5×90 or 450 mm whichever is less = 450 mm

20. (c)

For simply supported, $\left(\frac{l}{d}\right)_{\text{basic}} = 20$

For span > 10 m

$$\left(\frac{l}{d}\right)_{\text{basic}} = 20 \times \frac{10}{24} = \frac{200}{24}$$

Now,

$$\left(\frac{l}{d}\right)_{\text{max}} = \left(\frac{l}{d}\right)_{\text{basic}} k_t k_c$$

:.

$$d_{min} = \frac{24000}{\frac{200}{24} \times 1.6 \times 1.2} = 1500 \text{ mm}$$

21. (b)

Long term modulus of elasticity,

$$E_{\theta} = \frac{5000\sqrt{f_{ck}}}{1+\theta}$$
 (Clause C-4.1 of **IS 456 : 2000**)

::

$$f_{ck} = f_m - 1.65\sigma = 36 - 1.65 \times 4 = 29.4 \text{ MPa}$$

$$E_{\theta} = \frac{5000 \times \sqrt{29.4}}{1 + 1.5} = 10844.35 \text{ MPa}$$

22. (d)

Given

$$\phi = 18 \text{ mm}$$

$$\tau_{bd}$$
 = 1.5 N/mm² and Fe415 grade steel

Development length,

$$L_d = \frac{0.87 f_y \phi}{4 \tau_{bd}}$$

 \because Bars are in compression and HYSD bars are used. So, increase bond stress by 25% and 60% respectively.

$$L_d = \frac{0.87 \times 415 \times 18}{4 \times 1.6 \times 1.25 \times 1.5} = 541.575 \text{ mm} \approx 541.6 \text{ mm}$$

23. (c)

The maximum compressive strain = $0.0035 - 0.75 \times \text{strain}$ in least compressed extreme fibre

$$\Rightarrow$$
 0.0028 = 0.0035 - 0.75 \in ₁

$$\Rightarrow \qquad \qquad \in_{i} = 9.33 \times 10^{-4}$$

24. (b)

 $\frac{\text{Reinforcement in central band width}}{\text{Total reinforcement in short direction}} = \frac{2}{\beta + 1}$

where

$$\beta = \frac{\text{Long side}}{\text{Short side}} = \frac{4.5}{3} = 1.5$$

Reinforcement in central band width = $\frac{2}{1.5+1} \times 825 = 660 \text{ mm}^2$

25. (d)

$$A_{st} = 4 \times \frac{\pi}{4} \times 18^2 = 1018 \text{ mm}^2$$

 $b = 250 \text{ mm}, d = 500 \text{ mm}, f_{ck} = 20 \text{ MPa}$

Equating compressive and tensile forces

$$C = T$$

$$0.36 f_{ck} x_u b = 0.87 A_{st} f_y$$

$$x_u = \frac{0.87 \times 1018 \times 250}{0.36 \times 20 \times 250} = 122.99 \text{ mm} \simeq 123 \text{ mm}$$
Also,
$$x_{u,\text{lim}} = 0.53d = 0.53 \times 500$$

$$= 265 \text{ mm} > 123 \text{ mm} \qquad (x_u < x_{u\text{lim}} \text{ so under reinforced section})$$

$$x_u = 123 \text{ mm} = 12.3 \text{ cm}$$

26. (d)

Effective width of flange,

$$b_f = \frac{l_0}{\frac{l_0}{b} + 4} + b_w$$

$$= \frac{8000}{\frac{8000}{1000} + 4} + 300 = 966.67 \text{ mm}$$

27. (b)

Given : l = 3200 mm, D = 400

$$\Rightarrow$$
 Slenderness ratio = $\frac{l}{D} \le \frac{3200}{400} = 8.0$ (as column is braced)

As $\frac{l}{D} \le 12$, the column may be designed as a short column

Minimum eccentricity

$$e_{\min} = \frac{l}{500} + \frac{D}{30}$$

 $e_{\min} = \frac{3200}{500} + \frac{400}{30} = 19.73 \text{ mm (< 20.0 mm)}$

Factored load,

$$P_{u} = 1500 \text{ kN (given)}$$

For spiral column,
$$P_u = 1.05 \left[0.4 f_{ck} A_g + \left(0.67 f_y - 0.4 f_{ck} \right) A_{sc} \right]$$

Design of longitudinal reinforcement

$$\frac{1500 \times 10^{3}}{1.05} = 0.4 \times 25 \times \frac{\pi \times 400^{2}}{4} + (0.67 \times 415 - 0.4 \times 25) A_{sc}$$

$$\Rightarrow$$
 1428.6 × 10³ = 1256.6 × 10³ + 268.05 A_{sc}

$$A_{sc} = (1428.6 - 1256.6) \times \frac{10^3}{268.05}$$
$$= 642 \text{ mm}^2$$

Percentage reinforcement =
$$\frac{642}{\frac{\pi}{4} \times (400)^2} \times 100 = 0.51\% < 0.8\%$$

So,
$$A_{sc,min} @ 0.8\% \text{ of } A_g = \frac{0.8}{100} \times \frac{\pi \times 400^2}{4} = 1005 \text{ mm}^2$$

28. (a)

$$\begin{split} L_d &\leq \frac{1.3M_1}{V} + L_0 \\ \frac{0.87 \times 415 \times 20}{4\tau_{bd} \times 1.6} &\leq \frac{1.3 \times 93.45 \times 10^6}{110 \times 1.5 \times 10^3} + L_0 \\ 940.23 &\leq 736.27 + L_0 \\ L_0 &\geq 203.96 \text{ mm} \simeq 204 \text{ mm} \end{split}$$

29. (b)

30. (d)

Since column face governs the bearing resistance,

So,
$$f_{hr} = 0.45 f_{ck} = 0.45 \times 25 = 11.25 \text{ MPa}$$

So, Limiting bearing resistance = $11.25 \times 450^2 \times 10^{-3}$ kN = 2278.125 kN