
\qquad
(

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

STRENGTH OF MATERIALS

CIVIL ENGINEERING

Date of Test : 16/08/2023

ANSWER KEY

1. (b)
2. (a)
3. (a)
4. (c)
5. (a)
6. (a)
7. (a)
8. (b)
9. (a)
10. (a)
11. (c)
12. (a)
13. (a)
14. (c)
15. (c)
16. (c)
17. (c)
18. (d)
19. (c)
20. (c)
21. (b)
22. (c)
23. (b)
24. (d)
25. (d)
26. (a)
27. (c)
28. (b)
29. (b)
30. (a)

DETAILED EXPLANATIONS

1. (b)

Material
 Modulus of elasticity (in GPa)

1. Steel

200-220
2. Cast iron 100-160
3. Brass

80-90
4. Aluminum 60-80
2. (a)

Elongation due to self weight,

$$
\begin{aligned}
\Delta & =\frac{\gamma L^{2}}{2 E} \\
& =\frac{\left(89.2 \times 10^{-6}\right) \times\left(15 \times 10^{3}\right)^{2}}{2 \times\left(90 \times 10^{3}\right)}=0.11 \mathrm{~mm}
\end{aligned}
$$

3. (c)

$$
\text { Poisson's ratio, } \begin{aligned}
\mu & =\frac{3 K-2 G}{6 K+2 G} \\
& =\frac{3 \times 6.93 \times 10^{4}-2 \times 2.65 \times 10^{4}}{6 \times 6.93 \times 10^{4}+2 \times 2.65 \times 10^{4}}=0.33
\end{aligned}
$$

4. (c)

$$
\begin{aligned}
\text { Strain energy, } U & =\frac{1}{2} \times P \times \Delta \\
& =\frac{1}{2} \times P \times \frac{P L^{3}}{48 E I} \\
\therefore \quad U & =\frac{P^{2} L^{3}}{96 E I}
\end{aligned}
$$

For $P=1 ; U=\frac{L^{3}}{96 E I}$
5. (b)

If a force acts on a body, then resistance to the deformation is known as stress.
6. (a)

The length of column is very large as compared to its cross-sectional dimensions.
7. (a)

Internal hinge in given beam becomes internal roller in conjugate beam.
8. (a)

Maximum shear stress, $\tau_{\max }=\frac{16}{\pi D^{3}} \sqrt{M^{2}+T^{2}}$
$=\left[\frac{16}{\pi(100)^{3}} \sqrt{(8)^{2}+(6)^{2}}\right] \times 10^{6}=\frac{16}{\pi} \times \frac{10 \times 10^{6}}{10^{6}}=50.93 \mathrm{MPa}$
9. (a)

$$
\begin{aligned}
& \text { Assuming }\left(\sigma_{\mathrm{x}}>\sigma_{\mathrm{y}}\right) \\
& \qquad \begin{aligned}
A B & =\sigma_{x}-\sigma_{y} \\
A C & =\frac{A B}{2}=\frac{\sigma_{x}-\sigma_{y}}{2} \\
O C & =O A+A C=\sigma_{y}+\frac{\sigma_{x}-\sigma_{y}}{2} \\
\therefore & =\frac{\sigma_{x}+\sigma_{y}}{2}
\end{aligned}
\end{aligned}
$$

10. (c)

$\Sigma F_{y}=0$

Also,

$$
R_{A}+R_{B}=0
$$

\Rightarrow

$$
\Sigma M_{A}=0
$$

$$
R_{B} \times 5=15
$$

\Rightarrow

$$
R_{B}=3 \mathrm{kN}
$$

So,

$$
R_{A}=-3 \mathrm{kN}
$$

Now, the SFD for the beam will be as shown below:

11. (c)

$$
\begin{array}{rlrl}
M_{A}+30 \times 1.5 & =3 V_{A} & \left(\sum M_{B}=0, \text { Left } \rightarrow \text { Right }\right) \\
3 V_{C} & =10 \times 3 \times 1.5 & & \left(\sum M_{B}=0, \text { Right } \rightarrow \text { Left }\right) \tag{iv}
\end{array}
$$

Solving equations (i), (ii), (iii) and (iv)

$$
\begin{aligned}
V_{C} & =15 \mathrm{kN}, V_{A}=45 \mathrm{kN}, H_{A}=30 \mathrm{kN} \\
\therefore \quad & \frac{\text { Reaction at A }}{\text { Reaction at C }}=\frac{\sqrt{45^{2}+30^{2}}}{15}=3.6
\end{aligned}
$$

12. (c)

Plane having zero shear stress is called principal planes.

$$
\begin{aligned}
\tan 2 \theta_{\mathrm{p}} & =\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}} \\
\tan 2 \theta_{\mathrm{p}} & =\frac{2 \times 30}{60-20} \\
\tan 2 \theta_{\mathrm{p}} & =1.5 \\
2 \theta_{\mathrm{p}} & =\tan ^{-1}(1.5) \\
\theta_{\mathrm{p}} & =28.15^{\circ}
\end{aligned}
$$

Required angle from plane $B, \theta=90^{\circ}-28.15^{\circ}=61.85^{\circ}$ (Clockwise)
13. (a)

$$
\begin{aligned}
\theta_{\mathrm{AC}} & =\theta_{\mathrm{AB}}+\theta_{\mathrm{BC}} \\
\theta_{\mathrm{C}} & =\frac{T_{A B} \times L_{A B}}{G J_{A B}}+\frac{T_{B C} \times L_{B C}}{G J_{B C}}\left(\because \theta_{A}=0\right) \\
J_{B C} & =\frac{\pi}{32}\left[D^{4}-\left(\frac{D}{2}\right)^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
J_{B C} & =\frac{\pi}{32} D^{4}\left[1-\frac{1}{16}\right] \\
J_{B C} & =\frac{15}{16} J_{A B}=\frac{15}{16} J \\
\therefore \quad \theta_{C} & =\frac{T \times \frac{3 L}{4}}{G J}+\frac{T \times \frac{L}{4}}{G \times \frac{15}{16} J} \\
& =\frac{3}{4} \frac{T L}{G J}+\frac{4}{15} \frac{T L}{G J} \\
& =\frac{45 T L+16 T L}{60 G J}=\frac{61}{60} \frac{T L}{G J}
\end{aligned}
$$

14. (b)

$$
\begin{aligned}
U & =\int \frac{M^{2} d s}{2 E I}=\int_{0}^{\pi / 2} \frac{(W R \sin \theta)^{2}(R d \theta)}{2 E I} \\
& =\frac{W^{2} R^{3}}{2 E I} \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta d \theta=\frac{\pi}{8} \frac{W^{2} R^{3}}{E I}
\end{aligned}
$$

15. (a)

Given, $M=54.0 \mathrm{kNm}$ and $T_{z}=72.0 \mathrm{kNm}$
Consider external and internal diameter as D and $\mathrm{d}(=0.5 \mathrm{D})$ respectively,
Now, section modulus, $Z=\frac{\pi D^{3}}{32}\left(1-\frac{d^{4}}{D^{4}}\right)=\frac{\pi D^{3}}{32}\left(1-\left(\frac{1}{2}\right)^{4}\right)=\frac{15 \pi D^{3}}{512}$
Polar section modulus,

$$
Z_{p}=\frac{\pi D^{3}}{16}\left(1-\frac{d^{4}}{D^{4}}\right)=\frac{15 \pi D^{3}}{256}
$$

Maximum shear stress is given by,

$$
\begin{aligned}
\tau_{\max } & =\frac{T}{Z_{p}}=\left(\frac{256}{15 \pi D^{3}}\right) \times T_{e} \\
T_{e} & =\sqrt{M^{2}+T^{2}}=\sqrt{54^{2}+72^{2}}=90 \mathrm{kNm}
\end{aligned}
$$

Now,

$$
\begin{aligned}
96 & =\left(\frac{256}{15 \pi D^{3}}\right) \times 90 \times 10^{6} \\
D^{3} & =\frac{256}{15 \pi} \times \frac{90 \times 10^{6}}{96}=5092958 \\
D & =172.05 \mathrm{~mm}
\end{aligned}
$$

16. (d)

BMD
17. (b)

BMD

18. (b)

$$
\begin{aligned}
\mathrm{MOR} & =M_{w}+M_{s} \\
M & =\sigma_{w} \times \frac{B D^{2}}{6}+m \sigma_{w} \times \frac{2 t D^{2}}{6}\left(\because \frac{\sigma_{s}}{\sigma_{w}}=\frac{E_{s}}{E_{w}}=m\right) \\
M & =\frac{\sigma D^{2}}{6}[B+2 m t]
\end{aligned}
$$

19. (c)

Now,

$$
\begin{aligned}
M_{B} & =-20 \times 1-10 \times \frac{1^{2}}{2}=-25 \mathrm{kN}-\mathrm{m} \\
& =25 \mathrm{kN}-\mathrm{m} \text { (Hogging) }
\end{aligned}
$$

20. (a)

Principal strains,

$$
\begin{aligned}
\varepsilon_{1 / 2} & =\frac{\varepsilon_{x}+\varepsilon_{y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right)^{2}+\left(\frac{\phi_{x y}}{2}\right)^{2}} \\
& =\left[\frac{800+200}{2} \pm \sqrt{\left(\frac{800-200}{2}\right)^{2}+\left(\frac{-600}{2}\right)^{2}}\right] \times 10^{-6} \\
\varepsilon_{1} & =924.264 \times 10^{-6} \\
\varepsilon_{2} & =75.74 \times 10^{-6}
\end{aligned}
$$

Thus major principal stress is,

$$
\begin{aligned}
\sigma_{1} & =\frac{E}{1-\mu^{2}}\left(\varepsilon_{1}+\mu \varepsilon_{2}\right)=\frac{200 \times 10^{3}}{1-0.3^{2}}(924.264+0.3 \times 75.74) \times 10^{-6} \\
& =208.13 \mathrm{MPa}
\end{aligned}
$$

21. (c)

Deflection at B due to load $=\frac{w l^{4}}{8 E I}=\frac{10 \times(3000)^{4}}{8 \times 5 \times 10^{11}}=202.5 \mathrm{~mm}$
Since gap is 3 mm .

$$
\begin{array}{rlrl}
& \therefore & 202.5-3 & =\frac{R l^{3}}{3 E I} \\
\Rightarrow & \frac{(202.5-3) \times 3 \times 5 \times 10^{11}}{(3000)^{3}} & =R \\
\Rightarrow & R & =11.083 \times 10^{3} \mathrm{~N} \simeq 11.08 \mathrm{kN}
\end{array}
$$

22. (c)

The tentative deflection for the loading is shown.

So, option (c) is possible.
23. (d)

In pure bending case,

$$
\begin{aligned}
& \frac{M}{I} & =\frac{\sigma}{y}=\frac{E}{R} \\
\text { So, } & R & =\frac{E I}{M}
\end{aligned}
$$

When same M is applied,

$$
\begin{aligned}
& \frac{R_{1}}{R_{2}} & =\frac{(E I)_{1}}{(E I)_{2}} \\
\Rightarrow & \frac{2}{R_{2}} & =\frac{70 \times \frac{\pi}{4} \times 2.5^{4}}{120 \times \frac{\pi}{4} \times 2^{4}} \\
\Rightarrow \quad & R_{2} & =1.404 \mathrm{~m}
\end{aligned}
$$

24. (b)

When both ends are clamped, $\quad\left(l_{\text {eff }}\right)_{1}=\frac{l}{2}$
When one end is free, $\quad\left(l_{\text {eff }}\right)_{2}=2 l$
Buckling load,

$$
P_{c r}=\frac{\pi^{2} E I}{l_{e f f}^{2}}
$$

So,

$$
\left(P_{c r}\right)_{1}=\frac{4 \pi^{2} E I}{l^{2}}
$$

Similarly,

$$
\left(P_{c r}\right)_{2}=\frac{\pi^{2} E I}{4 l^{2}}
$$

So,

$$
\begin{aligned}
\% \text { change } & =\frac{\frac{4 \pi^{2} E I}{l^{2}}-\frac{\pi^{2} E I}{4 l^{2}}}{\frac{4 \pi^{2} E I}{l^{2}}} \times 100=\frac{4-(1 / 4)}{4} \times 100 \\
& =\left(1-\frac{1}{16}\right) \times 100=93.75 \%
\end{aligned}
$$

25. (a)

We know that for a circular section,
Maximum shear stress, $\tau_{\max }=\frac{4}{3} \tau_{a v}$
where,

$$
\tau_{a v}=\frac{V}{A}=\frac{6675}{\frac{\pi}{4} \times 50^{2}}=3.4 \mathrm{~N} / \mathrm{mm}^{2}
$$

So,

$$
\tau_{\max }=\frac{4}{3} \times 3.4=4.53 \mathrm{~N} / \mathrm{mm}^{2}
$$

26. (a)

As it is given that,

$$
\varepsilon=\frac{\sigma}{E}=\frac{y}{R}=3.0 \times 10^{-5}
$$

So, $\quad \frac{1}{R}=\frac{3.0 \times 10^{-5}}{30} \mathrm{~mm}^{-1}=10^{-6} \mathrm{~mm}^{-1}$

Also, in pure bending, $\frac{\sigma}{y}=\frac{M}{I}=\frac{E}{R}=$ constant
For $\sigma_{\max } y_{\max }$ has to be used
So, $\quad \sigma_{\max }=\frac{E}{R} y_{\max }=\frac{200 \times 10^{3}}{R} \times y_{\max }$
$\Rightarrow \quad \sigma_{\max }=200 \times 10^{3} \times 10^{-6} \times 50 \mathrm{MPa}$
$\Rightarrow \quad \sigma_{\max }=10 \mathrm{MPa}$
27. (c)

For a closed cylinder (thin), the two stress components induced due to internal pressure are,

$$
\begin{aligned}
\sigma_{h} & =\frac{p d}{2 t} \\
\sigma_{l} & =\frac{p d}{4 t}
\end{aligned} \quad \text { (Hoop stress) }
$$

If we neglect the pressure in radial direction, this becomes a plane stress condition.

For this condition, $\quad \tau_{\max }=\max .\left\{\frac{\sigma_{h}}{2}, \frac{\sigma_{l}}{2}, \frac{\sigma_{h}-\sigma_{l}}{2}\right\}=\frac{p d}{4 t}$
For safety, $\quad \tau_{\max } \leq \frac{\left(f_{y / 2}\right)}{\text { FOS }}$
$\Rightarrow \quad \frac{p \times 2 \times 100}{4 \times 5}=\frac{100 / 2}{2}$
$\Rightarrow \quad p=2.5 \mathrm{MPa}$
28. (c)

At y - y, slope of BMD is +ve and constant and hence shear force is +ve and constant

$$
S F_{y y}=\frac{400-200}{4}=50 \mathrm{kN}
$$

29. (d)

$$
\text { Rankine's crippling load }=\frac{\sigma_{c s} A}{1+\alpha\left(\frac{l_{e}}{k}\right)^{2}}
$$

As both ends are hinged

$$
\text { So } \begin{aligned}
l_{e} & =l=2.3 \mathrm{~m} \\
\therefore \quad P_{R} & =\frac{335 \times 88.75 \pi}{1+\frac{1}{7500}\left[\frac{2.3 \times 10^{3}}{12.6}\right]^{2}} \\
& =17161.04 \mathrm{~N}=17.16 \mathrm{kN}
\end{aligned}
$$

30. (a)

$$
\sigma_{P_{1} / P_{2}}=\frac{P_{1}+P_{2}}{2} \pm \frac{1}{2} \sqrt{\left(P_{1}-P_{2}\right)^{2}+(2 q)^{2}}
$$

Given $\sigma_{P 2}=0$

$$
\begin{array}{cc}
\Rightarrow & \left(P_{1}+P_{2}\right)^{2}=\left(P_{1}-P_{2}\right)^{2}+4 q^{2} \\
\Rightarrow & 2 P_{1} P_{2}=4 q^{2}-2 P_{1} P_{2} \\
\Rightarrow & P_{1} P_{2}=q^{2} \\
\Rightarrow & q=\sqrt{P_{1} P_{2}}
\end{array}
$$

