

Duration : 1:00 hr.

Read the following instructions carefully

1. This question paper contains 30 objective questions. Q.1-10 carry one mark each and Q.11-30 carry two marks each.
2. Answer all the questions.
3. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely using a good soft eraser.
4. There will be NEGATIVE marking. For each wrong answer $1 / 3$ rd of the full marks of the question will be deducted. More than one answer marked against a question will be deemed as an incorrect response and will be negatively marked.
5. Write your name \& Roll No. at the specified locations on the right half of the ORS.
6. No charts or tables will be provided in the examination hall.
7. Choose the Closest numerical answer among the choices given.
8. If a candidate gives more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct and there will be same penalty as above to that questions.
9. If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.

Q.No. 1 to Q.No. 10 carry 1 mark each

Q. 1 Consider the circuit shown in the figure below:

The voltage ' V ' across the 1Ω resistor is
(a) -5 V
(b) -20 V
(c) -6.67 V
(d) 10 V
Q. 2 Consider a circuit shown below,

At steady state, the current through resistor is given by $15 \cos t$ and the voltage across the inductor is $2 \sin t$. The RMS value of the current through the capacitor is
(a) $\frac{15}{\sqrt{2}} \mathrm{~A}$
(b) $12 \sqrt{2} \mathrm{~A}$
(c) $7 \sqrt{2} \mathrm{~A}$
(d) $8 \sqrt{2} \mathrm{~A}$
Q. 3 A DC voltage source is connected across a series R-C circuit, when steady state reaches, the ratio of energy stored in the capacitor to the total energy supplied by the voltage source is given by
(Assume that the circuit is initially relaxed)
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) 0.632
(d) 1
Q. 4 Consider the circuit shown in the figure below:

The Thevenin's equivalent resistance seen across the terminal A and B is
(a) 2Ω
(b) 10Ω
(c) 12Ω
(d) 15Ω
Q. 5 For the circuit shown in the figure below,

The equivalent inductance seen across the terminals a and b is
(a) 5 H
(b) 7 H
(c) 9 H
(d) 11 H
Q. 6 A series RLC circuit consists of a 10Ω resistor in series with $L=20 \mu \mathrm{H}$ and $\mathrm{C}=100$ $\mu \mathrm{F}$. The new value of L, for which the resonant frequency is one half the original value.
(a) $10 \mu \mathrm{H}$
(b) $40 \mu \mathrm{H}$
(c) $80 \mu \mathrm{H}$
(d) $400 \mu \mathrm{H}$
Q. 7 If the circuit shown in the figure below has been connected for a very long time, then the current i_{x} is

(a) $\frac{5}{8} \mathrm{~A}$
(b) $\frac{5}{16} \mathrm{~A}$
(c) $\frac{4}{5} \mathrm{~A}$
(d) $\frac{5}{32} \mathrm{~A}$
Q. 8 If the Laplace transform of the voltage $\operatorname{across} \frac{1}{2} \mathrm{~F}$ capacitor is $V_{C}(s)=$ $\frac{s+1}{s^{3}+s^{2}+s+1}$, then the value of current through capacitor at $t=0^{+}$is
(a) 0 A
(b) 1 A
(c) $\frac{1}{2} \mathrm{~A}$
(d) 2 A
Q. 9 Two impedances Z_{1} and Z_{2} are connected in series with the primary and secondary winding of an ideal transformer as shown in the figure below, where the primary coil has $j 6 \Omega$ and secondary coil has $j 9 \Omega$ reactance. The mutual inductance if $\omega=1000$ $\mathrm{rad} / \mathrm{sec}$ is

(a) 7.35 mH
(b) 9.45 mH
(c) 10.42 mH
(d) 12.25 mH
Q. 10 For a parallel $L C$ circuit shown in the figure below, the transmission line parameter $C(s)$ will be equal to

(a) $\frac{1}{1+s}$
(b) $s+\frac{1}{s}$
(c) $\frac{s}{1}+s^{2}$
(d) $\frac{s^{2}}{s^{2}+1}$

Q. No. 11 to Q. No. 30 carry 2 marks each

Q. 11 The equivalent resistance seen across the terminal ' A ' and ' B ' in the figure given below is

(a) 2Ω
(b) 4Ω
(c) 6Ω
(d) 8Ω
Q. 12 In a series RLC circuit, $L=40 \mathrm{mH}$ is given. If the instantaneous voltage and current $100 \cos \left(314 t-5^{\circ}\right) \mathrm{V}$ and $10 \cos \left(314 t-50^{\circ}\right) \mathrm{A}$, respectively, the value of R and C will be
(a) $R=10 \Omega$ and $C=580 \mu \mathrm{~F}$
(b) $R=7.07 \Omega$ and $C=580 \mu \mathrm{~F}$
(c) $R=7.07 \Omega$ and $C=5.49 \mathrm{mF}$
(d) $R=14.14 \Omega$ and $C=5.49 \mathrm{mF}$
Q. 13 Consider the circuit shown in the figure below,

Assume $V_{s}=250 \sin 500 t \mathrm{~V}$ and $Z_{s}=(100+$ $j 200) \Omega$. If Z_{L} to be a parallel combination of R and C, then the value of R and C such that the maximum power transfer takes from source to load are respectively.
(a) $R=8 \Omega$ and $C=500 \mu \mathrm{~F}$
(b) $R=100 \Omega$ and $C=10 \mu \mathrm{~F}$
(c) $R=250 \Omega$ and $C=250 \mu \mathrm{~F}$
(d) $R=500 \Omega$ and $C=8 \mu \mathrm{~F}$
Q. 14 Four resistors of equal value when connected in parallel across a supply dissipates 150 W . If the same resistors are now connected in series across the same supply, the power dissipated will be
(a) 9.375 W
(b) 10.425 W
(c) 11.475 W
(d) 15.225 W
Q. 15 Consider the circuit shown in the figure below:

The total power delivered by the dependent source is
(a) 1024 W
(b) 1100 W
(c) 1152 W
(d) 1252 W
Q. 16 For the circuit shown in the figure below, the value of ' R ' such that the maximum power delivered to the load is 5 mW will be

(a) 500Ω
(b) 550Ω
(c) 600Ω
(d) 650Ω
Q. 17 For the circuit shown in the figure below, assume that initial charge on capacitor as $250 \mu \mathrm{C}$. The current $i(t)$ following switching at $t=0$ will be

(a) $\left(125 e^{-2 \times 10^{5} t}\right) \mathrm{A}$
(b) $\left(135 e^{-5 \times 10^{5} t}\right) \mathrm{A}$
(c) $\left(10 e^{-2 \times 10^{5} t}\right) \mathrm{A}$
(d) $\left(12.5 e^{-5 \times 10^{5} t}\right) \mathrm{A}$
Q. 18 For the circuit shown in the figure below, The equivalent z-parameter matrix is

(a) $\left[\begin{array}{ll}2 \Omega & 3 \Omega \\ 1 \Omega & 1 \Omega\end{array}\right]$
(b) $\left[\begin{array}{ll}2 \Omega & 1 \Omega \\ 1 \Omega & 1 \Omega\end{array}\right]$
(c) $\left[\begin{array}{ll}2 \Omega & 3 \Omega \\ 1 \Omega & 3 \Omega\end{array}\right]$
(d) $\left[\begin{array}{ll}2 \Omega & 3 \Omega \\ 1 \Omega & 2 \Omega\end{array}\right]$
Q. 19 For a series RLC resonant circuit, the resonant frequency is given as 8 MHz and the bandwidth is 7.2 kHz . If the value of effective resistance is 4.5Ω, then the capacitance C will be equal to
(a) 0.49 pF
(b) 3.98 pF
(c) 12.45 pF
(d) 31.84 pF
Q. 20 A two port network is characterized by the following equations:

$$
3 V_{1}-I_{1}+4 I_{2}=0 \text { and } 4 I_{1}+2 I_{2}-6 V_{1}=5 V_{2}
$$

The y-parameter, y_{21} will be
(a) -0.25 V
(b) $-0.33 \mho$
(c) -0.39 V
(d) $-0.45 \mho$
Q. 21 Consider the circuit shown in the figure below,

The current i for $t<0$ is
(a) 0.565 A
(b) 0.942 A
(c) 1 A
(d) 1.142 A
Q. 22 For a series RL circuit, the charging time needed for an inductor current to reach 30% of its steady state value is given as 2 sec . If the value of $R=5 \Omega$, then the value of inductor will be
(a) 26 H
(b) 28 H
(c) 29 H
(d) 30 H
Q. 23 It is intended that the two networks of the figure be equivalent with respect to their terminals. Then the value of L_{2} will be

(a) $\frac{1}{5} \mathrm{H}$
(b) $\frac{1}{3} \mathrm{H}$
(c) $\frac{4}{3} \mathrm{H}$
(d) $\frac{2}{5} \mathrm{H}$
Q. 24 For the circuit shown in the figure below, the maximum power delivered to the load R_{L} is

(a) 612.65 mW
(b) 181.81 mW
(c) 9.25 W
(d) 3.09 W
Q. 25 Consider the circuit shown in the figure below:

The steady state is reached with the switch at position ' a '. At $t=0$, switching is moved to ' b '. The current post switching will be
(a) $\cos t$
(b) $\sin \sqrt{2} t$
(c) $\cos \sqrt{2} t$
(d) $-\sin t$
Q. 26 Consider the circuit shown in the figure below:

The switch get closed at $t=0$, then the value of $\left.\frac{d i_{1}}{d t}\right|_{\left(t=0^{+}\right)}$in $(\mathrm{A} / \mathrm{s})$ is
(a) $\frac{-\omega V_{0}}{R}$
(b) $\frac{\omega V_{0}}{R}$
(c) $\frac{\omega V_{0}}{R C}$
(d) $\frac{V_{0}}{C}$
Q. 27 Consider the circuit shown in the figure below:

The average power absorbed by the 8Ω resistor is
(a) 4.07 mW
(b) 13.61 mW
(c) 36.63 mW
(d) 1 W
Q. 28 For a given low pass filter, if $|H(\omega)|=0.2$ at a frequency of 20 MHz , then the value of capacitance C is

(a) 1.95 pF
(b) 2.25 pF
(c) 3.15 pF
(d) 4.15 pF
Q. 29 In a series RLC circuit, an AC voltage of $60 \angle 0^{\circ}$ volt is applied at a frequency of 200 $\mathrm{rad} / \mathrm{sec}$. The input current leads the voltage by 63.5°. If $L=50 \mathrm{mH}$ and $C=75 \mu \mathrm{~F}$. Then the resistance R will be
(a) 28Ω
(b) 32Ω
(c) 35Ω
(d) 40Ω
Q. 30 Consider the circuit shown in the figure below:

If current I through 5Ω resistor is 2 A , then the voltage V_{s} is
(a) 1 V
(b) 1.5 V
(c) 2 V
(d) 2.5 V

ANSWER KEY

| 1. | (a) | 7. | (b) | 13. | (d) | 19. | (b) | 25. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (a)

DETAILED EXPLANATIONS

1. (a)

Applying KCL at node (a), we get,

$$
\begin{aligned}
\frac{V_{a}}{3}+\frac{V_{a}}{3} & =5-15 \\
6 V_{a} & =-90 \quad \Rightarrow V_{a}=-15 \mathrm{~V}
\end{aligned}
$$

\because The current through 1Ω resistor is $\frac{V_{a}}{3}=-\frac{15}{3}=-5 \mathrm{~A}$
\therefore The voltage across 1Ω resistor is -5 V .
2. (c)

We know that,

$$
v_{L}(t)=L \frac{d i_{L}(t)}{d t}
$$

or,
$i_{L}(t)=\frac{1}{L} \int v_{L}(t) d t=\frac{1}{2} \int 2 \sin t d t$
$i_{L}(t)=-\cos t \mathrm{~A}$
also,

$$
i_{R}(t)=15 \cos t \mathrm{~A}
$$

By KCL,

$$
\text { or, } \begin{aligned}
i_{R}(t)-i_{C}(t)+i_{L}(t) & =0 \\
i_{C}(t) & =i_{L}(t)+i_{R}(t) \\
& =15 \cos t-\cos t=14 \cos t \mathrm{~A} \\
\text { RMS value of } i_{C}(t) & =\frac{14}{\sqrt{2}}=7 \sqrt{2} \mathrm{~A}
\end{aligned}
$$

3. (a)

The energy stored by the capacitor in the steady-state is $=\frac{1}{2} C V^{2}$

Energy supplied by the source, $E=\int_{0}^{\infty} p(t) d t=\int_{0}^{\infty} v \cdot i d t$

$$
\begin{aligned}
\because & =\frac{V}{R} e^{-t / \tau} \\
& =\int_{0}^{\infty} \frac{V^{2}}{R} e^{-t / \tau} d t=C V^{2}
\end{aligned}
$$

The total energy supplied by the voltage source $=C V^{2}$
\therefore The ratio of energy stored by the capacitor to the energy supplied by the voltage source is $\frac{1}{2}$.
4. (d)

In order to find $R_{T h}$, let us take the inactive network and connect a 1 V source across the open terminals,

Here,

$$
\begin{aligned}
R_{\mathrm{Th}} & =\frac{1 \mathrm{~V}}{I} \\
I & =i_{0}
\end{aligned}
$$

and
By applying KVL to the loop, we get,

$$
\begin{aligned}
2 I+3 i_{0}+10 I & =1 \mathrm{~V} \\
2 I+3 I+10 I & =1 \mathrm{~V}
\end{aligned}
$$

or,
$I=\frac{1 \mathrm{~V}}{15 \Omega}$
or,

$$
R_{\mathrm{Th}}=\frac{1 \mathrm{~V}}{I}=15 \Omega
$$

5. (b)

$$
L_{a b}=7 \mathrm{H}
$$

6
(c)

The resonant frequency for a series RLC circuit is given by

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{20 \times 100 \times 10^{-12}}}=3558.81 \mathrm{~Hz}
$$

Now,

$$
\begin{aligned}
f_{0}^{\prime} & =\frac{f_{0}}{2}=1779.4=\frac{1}{2 \pi \sqrt{L \times 100 \mu \mathrm{~F}}} \\
8.94 \times 10^{-5} & =\sqrt{L \times 100 \mu \mathrm{~F}} \\
L & =80 \mu \mathrm{H}
\end{aligned}
$$

7. (b)

As the circuit has been connected for a long time. Therefore, the inductors behave like a short circuit for the dc voltage source,
\therefore The circuit can be redrawn as

$$
V=\frac{10}{(4+4)} \times 4=5 \mathrm{~V}
$$

By KCL,

$$
i_{x}=\frac{V}{16}=\frac{5}{16} \mathrm{~A}
$$

8. (c)

$$
\begin{aligned}
i\left(0^{+}\right)=\lim _{s \rightarrow \infty} s I(s) & =\lim _{s \rightarrow \infty} s \cdot s C \cdot V(s) \\
& =\lim _{s \rightarrow \infty} s^{2} \times \frac{1}{2} \times \frac{s+1}{s^{3}+s^{2}+s+1}=\frac{1}{2} \mathrm{~A}
\end{aligned}
$$

9. (a)

For an ideal transformer, $K=1$

$$
\therefore \quad M=\sqrt{L_{1} L_{2}}
$$

Given,

$$
X_{L 1}=j \omega L_{1}=6 \mathrm{j}
$$

and

$$
X_{L 2}=j \omega L_{2}=9 j
$$

$$
\therefore \quad M=\sqrt{\frac{6 j}{j \omega} \times \frac{9 j}{j \omega}}=\frac{1}{\omega} \sqrt{6 \times 9}
$$

$$
=\frac{7.35}{\omega}=\frac{7.35}{1000}=7.35 \mathrm{mH}
$$

10. (b)

Redrawing the given network in Laplace domain, we get,

From transmission line parameter,

$$
\begin{aligned}
V_{1} & =A V_{2}+B\left(-I_{2}\right) \\
I_{1} & =C V_{2}+D\left(-I_{2}\right)
\end{aligned}
$$

For calculation of parameter $C(s)$, the output port must be open circuited and thereby,

$$
\left.\begin{array}{rl}
I_{2}(s) & =0 \\
\therefore & V_{2}(s)
\end{array}\right) \frac{s \times \frac{1}{s}}{s+\frac{1}{s}} I_{1}(\mathrm{~s})
$$

11. (b)

Redrawing the given circuit, we get,

Using Δ to Y conversion, we get,

Again using Y to Δ conversion, we have

or,

$$
\begin{aligned}
R_{\mathrm{AB}} & =10.67 \Omega \|(3.2 \Omega+3.2 \Omega) \\
& =\frac{10.67 \times 6.4}{10.67+6.4}=3.99 \Omega \approx 4 \Omega
\end{aligned}
$$

12. (b)

The current lags the voltage by $50^{\circ}-5^{\circ}=45^{\circ}$
$\therefore \quad \omega L>\frac{1}{\omega C}$

$$
\tan 45^{\circ}=1=\frac{\omega L-\frac{1}{\omega C}}{R}
$$

and

$$
\frac{V_{m}}{I_{m}}=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}=\sqrt{R^{2}+R^{2}}
$$

$$
\frac{100}{10}=\sqrt{2} R
$$

or

$$
R=7.07 \Omega
$$

$\because \quad R=\omega L-\frac{1}{\omega C}$

$$
\frac{1}{\omega C}=314 \times 40 \times 10^{-3}-7.07
$$

$$
\frac{1}{\omega C}=12.56-7.07=5.49
$$

$$
C=\frac{1}{314 \times 5.49} \approx 580 \mu \mathrm{~F}
$$

13. (d)

$$
\begin{align*}
Z_{L} & =R \|\left(-j X_{C}\right)=\frac{R\left(-j X_{C}\right)}{R-j X_{C}}=\frac{R\left(-j X_{C}\right)}{R-j X_{C}} \times \frac{R+j X_{C}}{R+j X_{C}} \\
& =\frac{R X_{C}^{2}}{R^{2}+X_{C}^{2}}-j \frac{R^{2} X_{C}}{R^{2}+X_{C}^{2}} \tag{i}
\end{align*}
$$

For maximum power transfer $Z_{L}=Z_{s}^{*}$

$$
\begin{array}{ll}
\because & Z_{s}=100+j 200 \\
\therefore & Z_{L}=100-j 200 \tag{ii}
\end{array}
$$

On comparing equation (i) and (ii), we get,

$$
\frac{R X_{C}^{2}}{R^{2}+X_{C}^{2}}=100 \text { and } \frac{R^{2} X_{C}}{R^{2}+X_{C}^{2}}=200
$$

on solving, we get, $X_{C}=250 \Omega$

$$
C=\frac{1}{500 X_{C}}=8 \mu \mathrm{~F}
$$

and

$$
R=500 \Omega
$$

14. (a)

Let ' R ' be the value of each resistor,
When connected in parallel, the equivalent resistor is given by

$$
R_{\mathrm{eq}}=\frac{1}{\frac{1}{R}+\frac{1}{R}+\frac{1}{R}+\frac{1}{R}}=\frac{R}{4} \Omega
$$

\therefore Power dissipated by the circuit,

$$
\begin{align*}
P & =\frac{V^{2}}{R_{\mathrm{eq}}} \\
150 & =\frac{V^{2}}{R / 4} \\
\frac{V^{2}}{R} & =\frac{150}{4} \tag{i}
\end{align*}
$$

Now, the resistors are connected in series,
The equivalent resistor is given by,

$$
R_{\mathrm{eq}}=R+R+R+R=4 R
$$

\therefore Power dissipated by the circuit,

$$
P=\frac{V^{2}}{R_{\mathrm{eq}}}=\frac{V^{2}}{4 R}=\frac{1}{4}\left(\frac{150}{4}\right)=\frac{150}{16}=9.375 \mathrm{~W}
$$

15. (c)

Redrawing the given circuit, we get,

In loop bcdeb,

$$
\begin{align*}
-10-V_{0}+4 i+4 V_{0} & =0 \\
3 V_{0}+4 i & =10 \tag{i}
\end{align*}
$$

But,

$$
\begin{equation*}
V_{0}=-(i+2) 1=-i-2 \tag{ii}
\end{equation*}
$$

Using the above relation, we get,

$$
\begin{aligned}
3(-i-2)+4 i & =10 \\
-3 i+4 i & =16 \\
i & =16 \mathrm{~A} \\
\therefore \quad V_{0} & =-i-2=-16-2=-18 \mathrm{~V}
\end{aligned}
$$

\therefore Power absorbed by dependent source $=4 V_{0} \times i=4(-18) \times(16)=-1152 \mathrm{~W}$
(Here negative sign indicates that the dependent source deliveres the power)
16. (c)

For finding R_{Th} across terminal a and b :

$$
R_{\mathrm{Th}}=\frac{R}{3} \Omega
$$

For finding V_{Th} :

Using KCL, we get,

$$
\begin{aligned}
\frac{V_{\mathrm{Th}}-1}{R}+\frac{V_{\mathrm{Th}}-2}{R}+\frac{V_{\mathrm{Th}}-3}{R} & =0 \\
3 V_{\mathrm{Th}} & =6 \\
V_{\mathrm{Th}} & =2 \mathrm{~V}
\end{aligned}
$$

\therefore Maximum power transferred will be given by

$$
\begin{aligned}
P_{\max } & =\frac{V_{\mathrm{Th}}^{2}}{4 R_{\mathrm{Th}}} \\
5 \times 10^{-3} & =\frac{2 \times 2}{4 \times \frac{R}{3}} \\
\frac{R}{3} & =\frac{10^{3}}{5} \\
R & =\frac{3}{5} \times 10^{3}=600 \Omega
\end{aligned}
$$

17. (b)

Following switching, the differential equation representing the circuit is,

$$
R i(t)+\frac{1}{C} \int i(t) d t=V=10
$$

Taking Laplace transform, we get,
$I(s)+\frac{I(s)}{2 \times 10^{-6} s}+\frac{Q_{0}}{2 \times 10^{-6} s}=\frac{10}{s} \quad \because Q_{0}=-250 \mu \mathrm{C}$
Therefore,

$$
I(s)+\frac{I(s)}{2 \times 10^{-6} s}-\frac{250}{2 s}=\frac{10}{s}
$$

or

$$
\begin{aligned}
I(s)+\frac{I(s)}{2 \times 10^{-6} s} & =\frac{135}{s} \\
I(s) & =\frac{135}{\left(s+5 \times 10^{5}\right)}
\end{aligned}
$$

Taking inverse Laplace transform, we get,

$$
i(t)=\left(135 e^{-5 \times 10^{5} t}\right) \mathrm{A}
$$

18. (c)

Let us first calculate z_{11} and z_{21} by open circuiting the output port,

$\because \quad I_{2}=0$
\therefore The circuit can be redrawn as
and

$$
V_{1}=2 I_{1}
$$

$\therefore \quad z_{11}=\frac{V_{1}}{I_{1}}=2 \Omega$

and

$$
z_{21}=\frac{V_{2}}{I_{1}}=1 \Omega
$$

Similarly z_{22} and z_{12} can be obtained by open circuiting the input port as,

and

$$
V_{1}=I_{2}+2 I_{2}=3 I_{2}
$$

$$
V_{2}=I_{2}+2 I_{2}=3 I_{2}
$$

$\therefore \quad z_{22}=\frac{V_{2}}{I_{2}}=3 \Omega$
and

$$
z_{12}=\frac{V_{1}}{I_{2}}=3 \Omega
$$

$\therefore \quad z$-parameter matrix $=\left[\begin{array}{cc}2 \Omega & 3 \Omega \\ 1 \Omega & 3 \Omega\end{array}\right]$
19. (b)

For an RLC circuit,

$$
\begin{equation*}
f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}-f_{1}=\text { Bandwidth }(\mathrm{BW})=\frac{1}{2 \pi} \times \frac{R}{L} \tag{ii}
\end{equation*}
$$

from equation (i) and (ii)

$$
\begin{aligned}
\frac{B W}{f_{0}^{2}} & =\frac{\frac{1}{2 \pi} \times \frac{R}{L}}{\frac{1}{4 \pi^{2}} \times \frac{1}{L C}}=2 \pi R C \\
\text { or } \quad C & =\frac{B W}{2 \pi \times R \times f_{0}^{2}}=\frac{7.2 \times 10^{3}}{2 \times \pi \times 4.5 \times 8 \times 10^{6} \times 8 \times 10^{6}}=3.978 \mathrm{pF}
\end{aligned}
$$

20. (b)

Given equations,

$$
\begin{equation*}
3 V_{1}=I_{1}-4 I_{2} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
5 V_{2}=4 I_{1}+2 I_{2}-6 V_{1} \tag{ii}
\end{equation*}
$$

From equation (i), putting the value of V_{1} in equation (ii), we get,

$$
\begin{aligned}
& 5 V_{2}=4 I_{1}+2 I_{2}-\frac{6}{3}\left(I_{1}-4 I_{2}\right) \\
& =4 I_{1}+2 I_{2}-2 I_{1}+8 I_{2} \\
& =2 I_{1}+10 I_{2} \\
& \therefore \quad z=\left[\begin{array}{cc}
1 / 3 & -4 / 3 \\
2 / 5 & 10 / 5
\end{array}\right] \\
& \text { where } \\
& y_{21}=-\frac{z_{21}}{\Delta z}=\frac{-2 / 5}{\frac{1}{3} \times \frac{10}{5}+\frac{2}{5} \times \frac{4}{3}}=-\frac{1}{3} v \\
& =-0.33 \mathrm{~J}
\end{aligned}
$$

21. (d)

For $t<0$, the switch was closed and the capacitor will act as an open circuit,

Using KCL at node (a), we get,

$$
\begin{array}{rlrl}
\frac{V_{a}}{10}+\frac{V_{a}}{80} & =8+2 i \\
\frac{V_{a}}{10}+\frac{V_{a}}{80} & =8+2\left(\frac{V_{a}}{80}\right) \\
\frac{V_{a}}{10}+\frac{V_{a}}{80}-\frac{V_{a}}{40} & =8 \\
\text { or } & & \\
\text { or } & V_{a}+V_{a}-2 V_{a} & =640 \\
V_{a} & =\frac{640}{7} \mathrm{~V} \\
\therefore \quad & =\frac{640}{7 \times 80}=\frac{8}{7} \mathrm{~A}=1.142 \mathrm{~A}
\end{array}
$$

22. (b)

For series $R L$ circuit, if the circuit is initially relaxed then,

$$
\begin{aligned}
i(t) & =i(\infty)\left(1-e^{-t / \tau}\right) \\
0.3 i(\infty) & =i(\infty)\left(1-e^{-t / \tau}\right) \\
0.7 & =e^{-t / \tau}
\end{aligned}
$$

Taking \ln both the sides, we get,

$$
\begin{aligned}
\ln 0.7 & =\frac{-t}{\tau} \\
\ln 0.7 & =\frac{-2}{L / 5}=\frac{-10}{L} \\
\text { or, } \quad L & =\frac{-10}{\ln 0.7}=28.036 \mathrm{H}
\end{aligned}
$$

23. (c)

The given circuit can be drawn as,

Converting ' Y ' 'acd' to ' Δ ', we get

Here, $\quad L_{c d}=\frac{1 \times \frac{1}{2}+1 \times \frac{1}{2}+1 \times 1}{1}=2 \mathrm{H}$

$$
\begin{aligned}
L_{a d} & =\frac{1 \times \frac{1}{2}+1 \times \frac{1}{2}+1 \times 1}{1}=2 \mathrm{H} \\
L_{a c} & =\frac{1 \times 1+1 \times \frac{1}{2}+1 \times \frac{1}{2}}{\frac{1}{2}}=4 \mathrm{H}
\end{aligned}
$$

\therefore The circuit can be redrawn as

where,

$$
L_{2}=\frac{2 \times 4}{2+4}=\frac{8}{6}=\frac{4}{3} \mathrm{H}
$$

24. (b)

For maximum power transfer, let us calculate the Thevenin's equivalent resistance,

Using KCL at node A, we get,

$$
\begin{aligned}
\frac{V-4 i_{1}}{5}+\frac{V}{10} & =i \\
2 V-8 i_{1}+V & =10 i \\
2 V-8\left(\frac{V}{10}\right)+V & =10 i \\
(20+10-8) V & =100 i
\end{aligned}
$$

or

$$
R_{\mathrm{Th}}=\frac{V}{i}=\frac{100}{22} \Omega=4.545 \Omega
$$

Finding V_{Th} :

Using KCL at node A, we get,

$$
\begin{aligned}
\frac{V_{\mathrm{Th}}-4 i_{1}}{5}+\frac{V_{\mathrm{Th}}-20}{10} & =0 \\
2 V_{\mathrm{Th}}+V_{\mathrm{Th}}-20 & =8 i_{1} \\
3 V_{\mathrm{Th}} & =8\left(\frac{V_{\mathrm{Th}}-20}{10}\right)+20 \\
3 V_{\mathrm{Th}}-20 & =\frac{8 V_{\mathrm{Th}}}{10}-\frac{160}{10}
\end{aligned}
$$

$$
\begin{aligned}
3 V_{\mathrm{Th}}-0.8 V_{\mathrm{Th}} & =4 \\
V_{\mathrm{Th}} & =\frac{4}{2.2}=1.818 \mathrm{~V}
\end{aligned}
$$

\therefore Maximum power transferred will be,

$$
P=\frac{V_{\mathrm{Th}}^{2}}{4 R_{\mathrm{Th}}}=\frac{V_{\mathrm{Th}}^{2}}{4 R_{\mathrm{Th}}}=\frac{(1.818)^{2}}{4 \times 4.545}=181.81 \mathrm{~mW}
$$

25. (a)

At steady state,

$$
I=\frac{E}{R}=1 \mathrm{~A}
$$

When switch moves from position ' a ' to ' b ', the tapped energy in L starts discharging through ' C '.
$\therefore \quad$ By KVL in the circuit

$$
L \frac{d i}{d t}+\frac{1}{C} \int i d t=0
$$

or, $\quad \operatorname{sLI}(s)-L i_{L}\left(0^{+}\right)+\frac{1}{C s} I(s)+\frac{v_{c}\left(0^{+}\right)}{s}=0$
$\because \quad i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=\frac{E}{R}=1 \mathrm{~A}$
and $\quad v_{c}\left(0^{-}\right)=v_{c}\left(0^{+}\right)=0 \mathrm{~V}$
Thus,

$$
\frac{1}{C s} I(s)+s L I(s)+\left(-\frac{E}{R}\right)=0
$$

or,

$$
I(s)=\frac{E s / R}{L\left[s^{2}+\frac{1}{L C}\right]}
$$

taking inverse Laplace transform of the above equation, we get,

$$
i(t)=\frac{1}{L} \cdot \frac{E}{R} \cos \left(\frac{t}{\sqrt{L C}}\right)
$$

By putting the values of parameters, we get,

$$
i(t)=\cos t \mathrm{~A}
$$

26. (b)

Before $t=0$, the circuit is a source free circuit.
Thus,

$$
\begin{aligned}
v_{C}\left(0^{-}\right) & =v_{C}\left(0^{+}\right)=0 \mathrm{~V} \\
i_{L}\left(0^{-}\right) & =i_{L}\left(0^{+}\right)=0 \mathrm{~A}
\end{aligned}
$$

and
at $t=0^{+}$, the circuit can be redrawn as

Writing the mesh equation, we get

$$
V_{0} \sin \omega t=R i_{1}(t)+\frac{1}{C} \int_{0}^{t} i_{1}(t) d t
$$

or

$$
\begin{aligned}
\omega V_{0} \cos \omega t & =R \frac{d i_{1}(t)}{d t}+\frac{i_{1}(t)}{C} \\
\frac{d i_{1}}{d t} & =\left[\omega V_{0} \cos \omega t-\frac{i_{1}(t)}{C}\right] \times \frac{1}{R} \\
\frac{d i_{1}}{d t}\left(0^{+}\right) & =\left.\frac{\omega V_{0} \cos \omega t}{R}\right|_{t=0^{+}}-\left.\frac{i_{1}(t)}{R C}\right|_{t=0^{+}} \\
\frac{d i_{1}}{d t}\left(0^{+}\right) & =\frac{\omega V_{0}}{R} \mathrm{~A} / \mathrm{s}
\end{aligned}
$$

27. (c)

Referring the secondary side, towards the primary, we get,

Where,

$$
Z_{L}=8-\frac{j}{\omega C}=(8-j 4) \Omega \text { and } n=\frac{1}{3}
$$

$$
\because \quad Z_{L}^{\prime}=\frac{Z_{L}}{n^{2}}=9 Z_{L}=(72-j 36) \Omega
$$

$$
\therefore \quad I_{1}=\frac{4 \angle 0^{\circ}}{48+72-j 36}=\frac{4 \angle 0^{\circ}}{125.28 \angle-16.70^{\circ}}
$$

$$
I_{1}=0.0319 \angle 16.70^{\circ}
$$

$$
\therefore \quad P_{8 \Omega}=\left|\frac{I_{1}^{2}}{2}\right| \times 72=0.5088 \times 10^{-3} \times 72
$$

$$
P_{8 \Omega}=36.63 \mathrm{~mW}
$$

28. (a)

For the given low pass filter

$$
|H(\omega)|=\frac{K}{\sqrt{1+\left(\frac{\omega}{\omega_{L}}\right)^{2}}}
$$

where $\omega_{L}=\frac{1}{R C}$

$$
\therefore \quad 0.2=\frac{K}{\sqrt{1+\left(\frac{\omega}{\omega_{L}}\right)^{2}}}
$$

For $K=1$,

$$
\begin{array}{rlrl}
\text { or, } & \begin{aligned}
1+\left(\frac{\omega}{\omega_{L}}\right)^{2} & =(0.2)^{-2}=25 \\
\Rightarrow & \left(\frac{\omega}{\omega_{L}}\right)^{2}
\end{aligned} & =24 \\
& \text { or, } \\
\Rightarrow \quad & & =\sqrt{\omega_{L}} & \\
\frac{\omega_{L}}{R C} & =\frac{\omega}{\sqrt{24}}=\frac{2 \pi f}{\sqrt{24}} \\
\text { or, } & & \frac{2 \pi \times 20 \times 10^{6}}{\sqrt{24}} \\
C & =\frac{\sqrt{24}}{2 \pi \times 20 \times 10^{6} \times 20 \times 10^{3}}=1.95 \times 10^{-12} \\
C & =1.95 \mathrm{pF}
\end{array}
$$

29. (a)

As we know,
and

$$
X_{L}=\omega L=200 \times 50 \times 10^{-3}=10 \Omega
$$

$$
X_{C}=\frac{1}{\omega C}=\frac{1}{200 \times 75 \times 10^{-6}}=66.67 \Omega
$$

\therefore $Z=R+j\left(X_{L}-X_{C}\right)=(R-j 56.67) \Omega$

Also, $\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\phi$
where ϕ is the angle between V and I in the circuit.

$$
\text { or, } \begin{aligned}
\tan \left(-63.5^{\circ}\right) & =\frac{X_{L}-X_{C}}{R}=\frac{10-66.67}{R} \\
R & =\frac{10-66.67}{-2.0056} \\
R & =28.255 \Omega
\end{aligned}
$$

Here, negative sign of ϕ indicates the leading angle.
30. (b)

The given circuit can be simplified as

Using source transformation of 16 V source, we get,

Again using source transformation

Using KVL, we get,

$$
\begin{aligned}
4+54+V_{s} & =(23+6.75) \times 2 \\
58+V_{s} & =59.5 \\
V_{s} & =59.5-58 \\
V_{s} & =1.5 \mathrm{~V}
\end{aligned}
$$

