CLASS TEST S.No. : 01 SKEE_ABCD_0708									D_070823
ERSE India's Best Institute for IES, GATE & PSUs									
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
		_							
		PC)WI	ER	S١	STI	MS	-2	
		ELI	ECTF	RICAL		JGINE	ERIN	JG	
Date of 1est:07/08/2023									
ANS	SWER K	EY >	•						
1.	(c)	7.	(b)	13.	(c)	19.	(b)	25.	(c)
2.	(c)	8.	(a)	14.	(b)	20.	(a)	26.	(b)
_				_			. ,		
3.	(d)	9.	(d)	15.	(d)	21.	(b)	27.	(b)
4.	(b)	10.	(c)	16.	(a)	22.	(c)	28.	(b)
5.	(a)	11.	(d)	17.	(a)	23.	(b)	29.	(b)
		40	(b)	10	(b)	24	(c)	30	(1.)

DETAILED EXPLANATIONS

1. (c)

We know,

$$Z_{pu} = \frac{Z_{act}}{Z_{base}}$$

also,

 $Z_{\text{base}} = \frac{kV_{\text{base}}^2}{\text{MVA}_{\text{base}}}$

...

 $Z_{pu} = Z_{act} \times \frac{MVA_{base}}{kV_{base}^2} = x$...(1)

After capacity is tripled and voltage is halved,

$$Z'_{pu} = (Z_{act}) \times \frac{3MVA_{base}}{\left(\frac{kV_{base}}{2}\right)^2} = Z_{act} \times \frac{12MVA_{base}}{kV_{base}^2} \qquad \dots (2)$$

Dividing equation (1) and (2),

$$\frac{x}{Z'_{pu}} = \frac{1}{12}$$
 or $Z'_{pu} = 12x$

2. (c)

For given power system four alternators are connected in parallel,

The venin's impedance, $Z_{\text{th}} = \frac{0.16}{4} = 0.04 \text{ pu}$ Also, fault current in pu, $I_f = \frac{1}{Z_{\text{th}}} = \frac{1}{0.04} = 25 \text{ pu}$ per unit short-circuit of system, $MVA_{\text{sc}} = 25 \text{ pu}$ \therefore short-circuit MVA, $MVA_{\text{sc}} = 25 \times \text{base MVA}$ $= 25 \times 5 = 125 \text{ MVA}$

3. (d)

During fault, the current value increases the voltage drops, power factor decreases reactive power drawn increases generally due to reactance of line.

: fault current is high having 90° lagging nature in a transmission line for phasor diagram.

The phasor of \vec{I}_2 is having largest magnitude and lags voltage V_1 by almost 90°.

So quantities \vec{V}_1 and \vec{I}_2 resembles faulty condition.

: location B is most feasible fault position according to phasor diagram.

4. (b)

We know for transposed transmission line,

	$X_2 = X_s - X_m = X_1$					
	$X_0 = X_s + 2 X_m$					
Given,	$X_s = 0.8 \ \Omega/\text{km}$ and $X_m = 0.2 \ \Omega/\text{km}$					
where,	X_1 = +ve sequence reactance					
	X_2 = -ve sequence reactance					
	X_0 = zero sequence reactance					
∴ Negative sequence reactance,						
	$X_2 = 0.8 - 0.2 = 0.6 \ \Omega/km$					

Zero sequence reactance,

$$K_0 = 0.8 + 2(0.2) = 1.2 \ \Omega/km$$

5. (a)

We know for coherently swinging generators,

$$G_{eq} \cdot H_{eq} = G_1 H_1 + G_2 H_2$$

= 300 × 1.8 + 450 × 1
Also given,
$$G_{eq} = \text{common MVA} = 200 \text{ MVA}$$
$$\therefore \qquad H_{eq} = \frac{300 \times 1.8 + 450 \times 1}{200} = 4.95 \text{ pu}$$

6. (b)

Kinetic energy \propto frequency²

$$W \propto f^{2}$$

$$\frac{W_{1}}{W_{2}} = \frac{f_{1}^{2}}{f_{2}^{2}}$$

$$f_{2} = f_{1}\sqrt{\frac{W_{2}}{W_{1}}} = 50 \times \sqrt{\frac{500 - (0.5 \times 50)}{500}} \quad [\because W = GH = 100 \times 5 \text{ MJ}]$$

$$= 48.734 \text{ Hz}$$

Percentage deviation in frequency,

$$= \frac{50 - 48.734}{50} \times 100 = 2.532\%$$

Thus we can say that I_1 and I_3 currents are going into bus thus they are PQ bus and I_2 is going away from bus

 \therefore Bus-2 is generator bus (*PV* bus).

7. (b)

This method is not directly applicable to multi-machine system.

8. (a)

Fault current at bus 3 is,

$$I_{f3} = \frac{V_3(0)}{Z_{33} + Z_f} = \frac{1}{j0.2780 + j0.15}$$
$$I_{f3} = -j \ 2.336 \text{ p.u.}$$
$$I_{f3} = 2.336 \text{ p.u.}$$

9. (d)

Zero sequence current in *R* line is

$$\vec{I}_{R_0} = \frac{1}{3} \times \text{Current in neutral wire}$$

$$= \frac{1}{3} \times 300 \angle 300^\circ = 100 \angle 300^\circ \text{ A}$$
Current in Y-line = $\vec{I}_Y = \vec{I}_{R_0} + a^2 \vec{I}_{R_1} + a \vec{I}_{R_2}$

$$= (100 \angle 300^\circ) + (1 \angle 120^\circ)^2 (200 \angle 0^\circ) + (1 \angle 120^\circ) (100 \angle 60^\circ)$$

$$= (100 \angle 300^\circ) + (200 \angle -120^\circ) + (100 \angle 180^\circ)$$

$$\vec{I}_Y = (300 \angle -120^\circ) \text{ A}$$

10. (c)

New frequency of operation of 200 MW alternator,

$$f_{1} = 50 - \frac{2}{200}P_{1}$$

$$f_{2} = 50 - \frac{3}{200}P_{2}$$
1 load, $P_{1} + P_{2} = 300 \text{ MW}$...(i)
ted in parallel so,
 $f_{1} = f_{2} = f$
 $50 - \frac{2}{200}P_{1} = 50 - \frac{3}{200}P_{2}$
 $2P_{1} - 3P_{2} = 0$...(ii)

and,

Total Units opera

$$50 - \frac{2}{200}P_1 = 50 - \frac{3}{200}P_2$$
$$2P_1 - 3P_2 = 0$$

From equations (i) and (ii), we get

 $P_1 = 180 \text{ MW}$ $P_2 = 120 \text{ MW}$

Machine (1) which has better speed regulation will be loaded first to its full load rating, so it will operate on maximum load of 200 MW.

$$2P_1 - 3P_2 = 0$$
 ...(iii)
 $2 \times 200 - 3P_2 = 0$
 $P_2 = \frac{400}{3} = 133.33 \text{ MW}$

Total power delivered by two machine without overloading

:.
$$P_1 + P_2 = 200 + 133.33 = 333.33$$
 MW

(d) 11.

We know,

$$Z_{pu} = Z_{act} \times \frac{MVA_{base}}{kV_{base}^2}$$

For generators G_1 and G_2 , base voltage remains same but MVA doubled to 40 MVA and $Z_{pu} = 0.05 \text{ pu}.$

$$\therefore \qquad Z_{\text{pu new}} = Z_{\text{pu old}} \times \frac{\text{MVA}_{\text{new}}}{\text{MVA}_{\text{old}}} \times \left(\frac{\text{kV}_{\text{old}}}{\text{kV}_{\text{new}}}\right)^2$$
$$= 0.05 \times \frac{40}{20} (1)^2 = 0.10 \text{ or } 10\%$$

:.
$$X_{\text{pu base}} = 0.10 \text{ pu} \times \frac{40}{18} = 0.22 \text{ pu}$$

For transmission line, hv side voltage will be base value,

$$Z_{pu} = Z_{act} \times \frac{MVA_{base}}{(kV_{base})^2} = 90 \times \frac{40}{(100)^2} = 0.36 \text{ pu}$$

12. (b)

Given, balanced system bus phase sequence RYB,

$$\vec{I}_{R} = I_{R} \angle 0^{\circ} = 10 \text{ A}$$

$$\vec{I}_{Y} = I_{R} \angle 240^{\circ} = a^{2} 10$$

$$\vec{I}_{B} = I_{R} \angle 120^{\circ} = a 10$$

$$\begin{bmatrix} I_{R0} \\ I_{R1} \\ I_{R2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a \end{bmatrix} \begin{bmatrix} 10 \\ a^{2} 10 \\ a 10 \end{bmatrix}$$

$$I_{R1} = \frac{1}{3} (10 + a^{3} 10 + a^{3} 10) = \frac{30}{3} = 10 \text{ A}$$

...

After fuses were blown, $I'_{R0} = I'_{R1} = I'_{R2} = \frac{10}{3} \text{ A}$

As,

...

$$I_R = 10 \text{ A and } I_Y = I_B = 0$$

Ratio $= \frac{I_{R1}}{I'_{R1}} = \frac{10}{10/3} = 3$

13. (c)

We know,
$$\delta = \delta_0 + \frac{P_a}{M} \frac{t^2}{2} \qquad \dots (1)$$

Also, 5 cycles of 50 Hz frequency

 $= 20 \text{ ms} \times 5 = 100 \text{ msec} = 0.1 \text{ sec}$

 $M = \frac{GH}{180 f} = \frac{840}{180 \times 50}$ (MJ sec/elec. degree)(data in electrical degree)

According power,

$$P_{a} = P_{M} - P_{E}$$
Using equation (1) as load in removed,

$$P_{a} = P_{M}$$

$$\delta = 10^{\circ} + \frac{50 \times 180 \times 50 \times (0.1)^{2}}{2 \times 840} = 12.679^{\circ} \text{ electrical degree}$$

14. (b)

The short-circuit current, $I_{sc} = 6$ pu

$$I_{\rm sc} = \frac{100}{\% X} \times I = 6 I$$

 $\% X = \frac{100}{6} = \frac{50}{3} = 16.67\%$

or

% internal reactance = 5%Required extra reactance = (16.67 - 5)% = 11.67%... % X

Also,

=
$$100 \times x \text{ pu} = 100 \times \frac{I_x}{V}$$

$$\Rightarrow$$

 $x = \frac{\%x}{100} \times \frac{V}{I}$ \therefore The reactance per phase, $x = \frac{11.67}{100 \times I} \times \frac{(10 \times 10^3)}{\sqrt{3}}$

where I, full load current

:.
$$I = I_L = \frac{VA}{\sqrt{3}V_L} = \frac{20 \times 10^6}{\sqrt{3} \times 10 \times 10^3} = 1154.7 \,\text{A}$$

Using above value, $x = \frac{11.67 \times 10^4}{\sqrt{3} \times 100 \times 1154.7} = 0.584 \,\Omega$

Using above value,

15. (d)

Voltage drop in each phase of generator is

$$\begin{bmatrix} \Delta V_a \\ \Delta V_b \\ \Delta V_c \end{bmatrix} = \begin{bmatrix} j2 & j1 & j1 \\ j1 & j2 & j1 \\ j1 & j1 & j2 \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$

or we can write in sequence components,

$$\begin{bmatrix} \Delta V_{a0} \\ \Delta V_{b0} \\ \Delta V_{c0} \end{bmatrix} = \begin{bmatrix} X_0 & 0 & 0 \\ 0 & X_1 & 0 \\ 0 & 0 & X_2 \end{bmatrix} \begin{bmatrix} I_{a0} \\ I_{a1} \\ I_{a2} \end{bmatrix}$$

$$X_0 = X_s + 2X_m = j2 + 2(j1) = j4 \text{ p.u.}$$

$$X_1 = X_s - X_m = j2 - j1 = j1 \text{ p.u.}$$

$$X_2 = X_s - X_m = j2 - j1 = j1 \text{ p.u.}$$

$$I_{f} = I_{a} = \frac{3E_{a}}{X_{1} + X_{2} + X_{0}} = \frac{3 \times 1}{j(4 + 1 + 1)} = -j0.5 \text{ p.u.}$$

$$\begin{bmatrix} \Delta V_{a} \\ \Delta V_{b} \\ \Delta V_{c} \end{bmatrix} = \begin{bmatrix} j2 & j1 & j1 \\ j1 & j2 & j1 \\ j1 & j1 & j2 \end{bmatrix} \begin{bmatrix} -j0.5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \\ 0.5 \end{bmatrix}$$

$$\begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix} = \begin{bmatrix} E_{an} \\ E_{bn} \\ E_{cn} \end{bmatrix} - \begin{bmatrix} \Delta V_{a} \\ \Delta V_{b} \\ \Delta V_{c} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.5 \\ 0.5 \end{bmatrix}$$

16. (a)

From coordination equation,

$$\frac{dF_n}{dP_{Gn}} \cdot \frac{1}{1 - \frac{\partial P_L}{\partial P_{Gn}}} = \lambda$$

Given,

So

Given,
$$P_L = 0.5P_{G1}^2$$

So, $\frac{dF_1}{dP_{G1}} \cdot \frac{1}{1 - P_{G1}} = \frac{dF_2}{dP_{G2}} \cdot \frac{1}{1 - 0}$
 $\Rightarrow \quad 10000 \times \frac{1}{1 - P_{G1}} = 12500$
 $P_{G1} = \frac{1}{5}$ p.u.

as the base value of 100 MVA

$$\begin{split} P_{G1} &= \frac{1}{5} \times 100 = 20 \text{ MVA} \\ P_{L} &= 0.5 P_{G1}^{2} = 0.5 \times \left(\frac{1}{5}\right)^{2} = 0.02 \text{ p.u.} \\ &= 0.02 \times 100 = 2 \text{ MVA} \\ P_{D} &= P_{G1} + P_{G2} - P_{L} \\ 40 &= 20 + P_{G2} - 2 \\ P_{G2} &= 22 \text{ MVA} \end{split}$$

17. (a)

Given,

 \Rightarrow

$$P_e = 50 \text{ MW}$$

K.E. = 800 MJ
 $f = 50 \text{ Hz};$
 $\delta_0 = 10^\circ$
Time for 8 cycles = $\frac{8}{50} = 0.16 \text{ sec}$
Time for 4 cycles = 0.08 sec
 $P_a = 50 \text{ MW}$
 $M = \frac{K.E.}{180 f} = \frac{GH}{180 \times f}$

India's Beet Institute for IES, GATE & PSUs

$$M = \frac{800}{180 \times 50} = 0.088$$
$$\frac{^2\delta}{t^2} = P_a$$

We know that, $M\frac{d^2}{dt}$

$$\frac{d^2\delta}{dt^2} = \frac{P_a}{M}$$

Integrating twice we have,

$$\delta = \frac{P_a}{M} \left[\frac{t^2}{2} \right] + \delta_0 = \frac{50}{0.088} \left[\frac{0.08^2}{2} \right] + 10^{\circ}$$

New value of power angle= $1.81^{\circ} + 10^{\circ} = 11.81^{\circ}$

18. (b)

Line-to line fault occurs on *b* and *c* phases of generator,

and

The sequence network for line to line fault is

$$i_{1} = \frac{0.2j}{I_{1}} = \frac{Z_{f}=0}{0.2j}$$

$$V_{f} = \frac{0.2j}{I_{2}} = \frac{0.2j}{I_{2}}$$

$$V_{1} = V_{2}$$

$$I_{1} = \frac{V_{f}}{Z_{1}+Z_{2}}$$

$$I_{f} = I_{b} = (\alpha^{2} - \alpha)I_{1} = -j\sqrt{3}I_{1} = \frac{-j\sqrt{3}V_{f}}{Z_{1}+Z_{2}}$$
and
$$I_{f \text{ p.u.}} = \frac{-j\sqrt{3} \times 1}{j0.2 + j0.2}$$

$$\left|I_{f \text{ p.u.}}\right| = \frac{\sqrt{3}}{0.4} = 4.33 \text{ p.u.}$$
Base current = $\frac{25 \times 10^{3}}{\sqrt{3} \times 11} = 1312.16 \text{ A}$

Fault current, $I_f = 4.33 \times 1312.16 = 5.68$ kA

19. (b)

For the fully transposed transmission line,

Positive sequence impedance $Z_1 = Z_s - Z_m$ Negative sequence impedance $Z_2 = Z_s - Z_m$ Zero sequence impedance, $Z_s = Z_s + 2Z_m + 3Z_n$ Where, $Z_s = \text{Self impedance/ph}$ $Z_m = \text{Mutual impedance/ph}$

If the system voltages are unbalanced, we have a neutral current, I_n flowing through the neutral (ground) having impedance Z_n .

From above equations, we can say

- 1. Positive and negative sequence impedance are equal.
- 2. Zero sequence impedance is much larger than the positive or negative sequence impedance.
- : Statement (I) is true and statement (II) is false.

20. (a)

Total Kinetic energy of the two machines,

=
$$G_1H_1 + G_2H_2$$

= 400 × 4 + 1600 × 2
= 4800 MJ

The equivalent *H* on the base of 200 MVA,

$$= \frac{4800 \text{ MJ}}{200 \text{ MVA}}$$
$$= 24 \text{ MJ/MVA}$$

21. (b)

Y-bus matrix for the π equivalent circuit.

Here,

The above circuit diagram becomes,

$$P \underbrace{I_{p}}_{V_{p}} \underbrace{JX}_{I_{q}} \underbrace{I_{q}}_{V_{q}} \varphi q$$

$$V_{p} \qquad V_{q}$$

$$P' \overline{\bullet} \qquad \overline{\bullet} q'$$

$$Y_{\text{bus}} = \begin{bmatrix} \frac{1}{jX} & \frac{-1}{jX} \\ \frac{-1}{jX} & \frac{1}{jX} \end{bmatrix}$$

India's Beet Institute for IES, GATE & PSUs

22. (c)

Minimum number of equations = 2n - m - 2

= 2(112) - 20 - 2 = 202

23. (b)

Let the base kVA be 500 kVA and base voltage be 2.5 kV, Per unit transient reactance of generator,

$$X_{g}' = \frac{j8}{100} = j0.08 \text{ p.u.}$$

Per unit subtransient reactance of each motor,

$$X_m'' = j0.2 \times \frac{500}{250} = j0.4 \text{ p.u.}$$

Per unit reactance diagram is shown below,

Thevenin reactance when viewed from fault terminals,

$$X_{\rm th} = \frac{\frac{j0.4}{3} \times j0.08}{\frac{j0.4}{3} + j0.08} = j0.05 \text{ p.u.}$$

At fault location V_{th} = rated voltage,

Fault current at
$$F$$
, $I_f = \frac{1}{j0.05} = -j20$ p.u.

The generator contribution is,

$$I_g = -j20 \times \frac{j\frac{0.4}{3}}{j\frac{0.4}{3} + j0.08}$$
$$I_g = -j12.5 \text{ p.u.}$$

Contribution of motors,

$$BI_m = I_f - I_g = -j20 - (-j12.5)$$

 $BI_m = -j7.5$
 $I_m = -j2.5$ p.u.

24. (c)

Only $Y_{22'}$ $Y_{24'}$ $Y_{42'}$ Y_{44} will change because transmission line is connected between 2nd and 4th buses.

$$Y_{22} = -j60 + \frac{1}{Z_{se}} + \frac{Y_{sh}}{2}$$

$$= -j60 + \frac{1}{j0.1} + j20 = -j60 - j10 + j20 = -j50$$

$$Y_{24} = Y_{42} = 0 - \frac{Y_{\text{sh}}}{2} = -j20$$

$$Y_{44} = -j25 + \frac{1}{Z_{\text{se}}} + \frac{Y_{\text{sh}}}{2} = -j25 + \frac{1}{j0.1} + j20 = -j25 - j10 + j20$$

$$Y_{44} = -j15$$

25. (c)

Reactive power supplied by capacitor to bus-1,

Given that,

$$Q_{21} = \frac{|V_2|^2}{X} - \frac{|V_2||V_1|}{X} \cos \delta$$

$$Q_{21} = 0$$

$$\frac{|V_2|^2}{X} = \frac{|V_2||V_1|}{X} \cos \delta$$

$$|V_2| = |V_1| \cos \delta$$
Given that,

$$|V_1| = 1 \text{ p.u.}$$

$$|V_2| = \cos \delta$$
...(i)

Since load demand at bus 2 is 1 p.u. (real power). This real power can be supplied by generator S_{G1} only. So this power should flow through transmission line from bus 1 to bus 2

 $\therefore \qquad P_{12} = 1 \text{ p.u.}$ $\therefore \text{ real power flow from bus 1 to bus 2,}$

$$P_{12} = \frac{|V_1||V_2|}{X} \sin \delta$$
$$1 = \frac{1 \cdot \cos \delta}{0.5} \cdot \sin \delta$$
$$0.5 = \frac{\sin 2\delta}{2}$$
$$\sin 2\delta = 1$$
$$2\delta = 90^{\circ}$$
$$\delta = 45^{\circ}$$

: from equation (i),

 $|V_2| = \cos \delta = \cos 45^\circ = \frac{1}{\sqrt{2}}$ $V_2 = \frac{1}{\sqrt{2}} \angle -45^\circ$

Voltage at bus-2,

During fault,

26. (b)

Given, before fault,

0.6 $P_{m1} = P_{m1} \sin \delta_0$ $\delta_0 = 36.86^\circ \text{ (or) } 0.643 \text{ radian}$

$$P_{m\,2} = 0.25 P_{m\,1} \text{ as } X_2 = 4X_1$$

...

After fualt,

$$P_{m 3} = 0.75 P_{m 1} \text{ (given)}$$

$$\therefore \qquad \delta_{\text{max}} = 180 - \sin^{-1} \left(\frac{0.6P_{m1}}{0.75P_{m1}} \right)$$

$$= 126.86^{\circ} \text{ (or) } 2.214 \text{ radian}$$
Since,
$$\cos \delta_{\text{cr}} = \frac{P_{s}(\delta_{\text{max}} - \delta_{0}) + P_{m3} \cos \delta_{m} - P_{m2} \cos \delta_{0}}{P_{m3} - P_{m2}}$$

$$\cos \delta_{\text{cr}} = \frac{0.6P_{m1}[2.214 - 0.643] + 0.75P_{m1} \cos(126.86) - 0.25P_{m1} \cos(36.86)}{0.75P_{m1} - 0.25P_{m1}}$$

$$= \frac{0.6(2.214 - 0.643) + 0.75\cos(126.86) - 0.25\cos(36.86)}{0.75 - 0.25}$$

$$\cos \delta_{\text{cr}} = 0.585$$

$$\delta_{\text{cr}} = 54.2^{\circ}$$

27. (b)

The reactance in p.u. = $Z_{p.u.} = Z_{\Omega} \times \frac{\text{MVA}_{(b)}}{(\text{kV})_b^2}$ $Z_{\Omega} = Z_{p.u.} \times \frac{(kV_b)^2}{(\text{MVA})_b}$ = $0.10 \times \frac{(33)^2}{10} = 10.89 \Omega$ So reactance per phase = $Z_{ph} = 10.89 \Omega$ $Z_{\Delta} = 3 \times Z_{ph} = 3 \times 10.89$ $Z_{\Delta} = 32.67 \Omega$

28. (b)

$$S_{D2} = (0.8 + j0) \text{ p.u.}$$

This 0.8 p.u. active power is supplied by the generator G_1

$$\therefore \qquad 0.8 = \frac{1 \times 1}{0.5} \sin \delta$$

$$\delta = \sin^{-1} \left(\frac{0.8}{2} \right) = 23.58^{\circ}$$

$$Q_R = \frac{|V_1| \times |V_2|}{X} \cos \delta - \frac{|V_1|^2}{X}$$

$$= \frac{1}{0.5} \cos(23.58^{\circ}) - \frac{1}{0.5}$$

$$Q_R = -0.167 \text{ p.u.}$$
The VAR rating of the capacitor = 0.167 p.u.

The VAR rating of the capacitor = 0.167 p.u.

29. (b)

The zero sequence impedance network from point *P* and ground

The Thevenin's equivalent zero sequence impedance $Z_{\rm Th}~=~(0.6~{\rm +}~j~0.16)~{\rm p.u.}$

30. (b)

3-¢ fault current:

Let system is under no load condition before fault,

$$E = 1 \angle 0^{\circ} \text{ p.u.}$$

3- ϕ fault current, $I_f = \frac{E}{X_1}$

$$\Rightarrow$$

...

 $X_1 = \frac{1}{-j5} = j0.2 \,\mathrm{p.u.}$

Line-line fault current:

$$I_f = \frac{\sqrt{3}E}{X_1 + X_2}$$

$$\Rightarrow \qquad X_1 + X_2 = \frac{\sqrt{3}}{-j2.5}$$

$$\Rightarrow \qquad j \ 0.2 + X_2 = j \ 0.69 \ \text{p.u.}$$

$$\Rightarrow X_2 = j \ 0.49 \ p.u$$