CL	ASS T	ES	Г						
						S.No. : 0	1 LS1 _	EC_S+T_10	0919
						D	igital E	lectronics	
Delhi	ELECTRONICS ENGINEERING								
			Date of	f Test	:10/	09/2019			
ANS	SWER KEY	>	Digital E	ectro	nics				
1.	(b)	7.	(b)	13.	(a)	19.	(c)	25.	(b)
2.	(c)	8.	(b)	14.	(b)	20.	(d)	26.	(c)
3.	(b)	9.	(d)	15.	(a)	21.	(b)	27.	(a)
4.	(d)	10.	(b)	16.	(b)	22.	(c)	28.	(c)
5.	(c)	11.	(a)	17.	(c)	23.	(c)	29.	(c)
6.	(c)	12.	(d)	18.	(b)	24.	(c)	30.	(b)

DETAILED EXPLANATIONS

1. (b)

$$Overall MOD = 3 \times 4 \times 5 = 60$$

Lowest frequency is output frequency

$$f_{\rm out} = \frac{24 \times 10^6}{60} = 400 \text{ kHz}$$

2. (c)

Master slave configuration stores 1-bit of data.

3. (b)

It is a toggle flip-flop, the values toggle $Q: 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1$ \uparrow initial state

4. (d)

Excitation table

Q_n	Q_{n+1}	J	Κ
0	0	0	Х
0	1	1	Χ
1	0	Х	1
1	1	Х	0

5. (c)

Using POS form

$$Z = (A+B+\overline{C})(\overline{A}+\overline{B}+\overline{C})$$
$$= (A+B)(\overline{A}+\overline{B})+\overline{C}$$
$$= A \oplus B + \overline{C}$$
$$= \overline{C} + (A \oplus B)$$

6. (c)

$$\overline{Y} = A + B + C$$

$$Y = \overline{A + B + C} = \overline{A}\overline{B}\overline{C}$$

$$= \Sigma m(0)$$

$$= \Pi M (1, 2, 3, 4, 5, 6, 7)$$

7. (b)

$$x \oplus y \oplus xy = (\overline{x}y + x\overline{y}) \oplus xy = (\overline{x}y \oplus xy) + (x\overline{y} \oplus xy) = y(x \oplus \overline{x}) + x(y \oplus \overline{y})$$
$$= y + x$$

8. (b)

$$Y = I_0 \cdot \overline{S}_1 \overline{S}_0 + I_1 \cdot \overline{S}_1 S_0 + I_2 \cdot S_1 \overline{S}_0 + I_3 S_1 S_0$$

$$Y = A\overline{B} + (1)B = B + A\overline{B} = A + B$$

10. (b)

11.

12.

		S_1	S_0	C	Q				
		Ā	\overline{B}	С	ĀĒC				
		Ā	В	1	ĀB				
		Α	\overline{B}	1	AĒ				
		Α	В	1	AB				
	$Q = \overline{A}\overline{B}C$	$c + \overline{A}$	BC -	⊦ <i>ĀB</i>	$\overline{C} + A\overline{B}C + A$	$\overline{B}\overline{C} + AB$	$C + AB\overline{C}$		
	$= \Sigma m($	1, 2,	3, 4,	, 5, 6	6, 7)				
	$= \Pi M($	0)							
(a)									
• 4221 0	code is a self complementing	g co	de.						
·.·	4 + 2 + 2	2 + 1	1 = 9						
• For a s	self complementing code sys	stem	, coc	dewo	ord of "5" = 1	's comple	ement of a	codeword	of "4"
·.·	5 = 9 - 4	i.e	e, 9's	con	nplement of 4	4.			
SO,	codeword of $5 = 1$'s c	omp	leme	ent o	f (1000)				
	= 0111								
(d)									
		Α			В				
		\downarrow	l		\Downarrow				
	A	1	A_0		B_1 B_0				

- A > B is possible when either of the following conditions is satisfied
- 1. When $A_1 > B_1 \Rightarrow$ i.e., when $G_1 = 1$
- 2. When $(A_1 = B_1)$ and $(A_0 > B_0) \Rightarrow i.e.$, when $E_1G_0 = 1$
- So, the Boolean expression for G is

$$G = E_1 G_0 + G_1$$

13. (a)

Χ	Y	Ζ	Α
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	Ο

\ ∨ 7	, I ₀	I_1	I_2	I_3
x	00	01	10	11
0	0	1	0	1
1	0	1	1	0
	0	1	x	$\frac{1}{X}$

Thus solution is option (a).

14. (b)

 $T_{\rm min}$ = minimum clock period required

= time delay from the time of active clock edge to the point of time, where the latest change appears at the input of flip-flops before the application of next active clock edge.

Let us assume active clock edge is applied at t = 0,

then,

the latest change in Q_0 appears at $\Rightarrow t = 5 \ \mu s$ the latest change in Q_1 appears at $\Rightarrow t = 4 \ \mu s$ the latest change in Q_2 appears at $\Rightarrow t = 3 \ \mu s$ the latest change in D_2 appears at $\Rightarrow t = 4 \ \mu s$ the latest change in D_1 appears at $\Rightarrow t = 4 \ \mu s$ the latest change in D_1 appears at $\Rightarrow t = 8 \ \mu s$ the latest change in D_0 appears at $\Rightarrow t = 10 \ \mu s$ so $T_{min} = -10 \ \mu sec$

$$f_{c \max} = \frac{1}{T_{\min}} = \frac{1}{10 \,\mu \text{sec}} = 100 \,\text{kHz}$$

15. (a)

the state table for given state diagram:

Present	Next	state	Out	put
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$
а	а	a b		0
b	с	d	0	0
с	а	d	0	1
d	е	f	0	1
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

$$X = input$$

state-g and state-e are equal, so we can replace state-g with state-e so, simplified state table will be,

Present	Next	state	Out	out
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$
а	а	b	0	0
b	с	d	0	0
с	а	d	0	1
d	е	f	0	1
е	а	f	0	1
f	е	f	0	1

now, state-*f* and state-*d* are equal. So, we can replace state-*f* with state-*d* so, simplified state table will be,

Present	Next	state	Out	out
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$
а	а	b	0	0
b	c d		0	0
с	а	d	0	1
d	e d		0	1
е	a d		0	1

now, state-*e* and state-*c* are equal. So, we can replace state-*e* with state-*c* so, simplified state table will be,

Present	Next	state	Output		
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$	
а	а	b	0	0	
b	с	d	0	0	
с	c a		0	1	
d	с	d	0	1	

• it is not possible to reduce the state table further, as there are no more equal states.

• so, minimum number of states required to design the circuit = 4. and minimum number of flip-flops required = 2.

16. (b)

A	В	f
0	0	P_1
0	1	P_2
1	0	P_3
1	1	P_4

so, the given pass logic network acts as EX-OR gate when $P_1 = P_4 = 0$ and $P_2 = P_3 = 1$.

17. (c)

The output z is connected from inverted outputs of the FFs through AND gate, i.e.

$$Z = \bar{Q}_A \bar{Q}_B \bar{Q}_C = \overline{Q_A + Q_B + Q_C}$$

Hence, the output *z* will be high only when all FF's output are zero, i.e. $Q_A = Q_B = Q_C = 0$ Let initially z = 1, then we obtain the truth table for the circuit as

	Pre	esent	State	Inputs					Next State				
CLK number	Q _A	Q _B	Q _C	J _A	K _A	J_B	K _B	J _C	ĸ _c	Q_A^+	Q^+_B	Q_C^+	z
initial	0	0	0	-	-	-	-	-	-	-	-	-	1
1	0	0	0	1	1	1	1	0	1	1	1	0	0
2	1	1	0	1	1	1	1	1	1	0	0	1	0
3	0	0	1	1	1	0	1	0	1	1	0	0	0
4	1	0	0	1	1	1	1	0	1	0	1	0	0
5	0	1	0	1	1	1	1	1	1	1	0	1	0
6	1	0	1	1	1	0	1	0	1	0	0	0	1

It is MOD-6 counter. So, output z will be 1 after 6 clock pulses.

18. (b)

When Q_4Q_3 is 11, then CLR = 0, hence the count goes back to 00000.

Thus, counter counts 0 - 23, and clears at 24. It's a MOD-24 counter.

19. (c)

$$f_{\max} = \frac{1}{nt_{pd}}$$

 t_{pd} = propagation delay of each flip-flop and n = number of flip flops

$$t_{pd} = \frac{1}{n \times 25 \times 10^6} \sec$$

= $\frac{1000}{4 \times 25} \times 10^{-9} \sec = 10 \operatorname{nsec}$

20. (d)

Clk No.	Q_1	Q_2	
0	0	0	\rightarrow initial
1	1	0	
2	1	1	
3	0	1	
4	0	0	

It's a Johnson counter after 4 clock pulses the state (Q_1Q_0) will be (00) again.

21. (b)

$$V_{0} = -RV_{ref} \left[\frac{b_{3}}{2R} + \frac{b_{2}}{4R} + \frac{b_{1}}{8R} + \frac{b_{0}}{16R} \right]$$

= $-\frac{V_{ref}}{16} \left[8b_{3} + 4b_{2} + 2b_{1} + b_{0} \right]$
 $V_{0} = -\frac{V_{ref}}{16} \left[\text{decimal equivalent of input binary code} \right]$
given input binary code = $(0110)_{2} = (6)_{10}$
 $V_{0} = \frac{10}{16}(6) = 3.75 \text{ V}$

www.madeeasy.in

SO,

MADE ERS

ndia's Best Institute for IES, GATE & PSUs

22. (c)

AΒ JΚ Q_{n+1} 0 0 1 0 1 0 1 1 1 \overline{Q}_n 1 0 1 0 1 1 1 0 1 0

$$Q_{n+1} = \overline{A}\overline{B} + A\overline{B} + \overline{A}B\overline{Q}_n$$
$$Q_{n+1} = \overline{B} + \overline{A}B\overline{Q}_n = \overline{B} + \overline{A}\overline{Q}_n$$

23. (c)

Output of the 4 : 1 MUX circuit in Figure A is

$$Y = I_0 \overline{A}\overline{B} + I_1 \overline{A}B + I_2 \overline{A}\overline{B} + I_3 \overline{A}B$$

Output of the circuit in Figure B is

$$Y = A \oplus B \oplus C = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

On comparison

 $\begin{array}{rcl} I_0 &=& C\\ I_1 &=& \overline{C}\\ I_2 &=& \overline{C}\\ I_3 &=& C \end{array}$

24. (c)

$$Y = (A \oplus B) \cdot A = (\overline{A}B + A\overline{B}) \cdot A$$

$$= A\overline{B} = D_2 \cdot \overline{D}_0$$

The LED will be in ON state for 30 ns < t < 40 ns. So, option (c) is the correct answer.

The *k*-map has to rearranged as

$$F = \overline{A}\overline{B}\overline{C} + \overline{B}\overline{D} + AC$$

26. (c)

$$F = \overline{(A+B)C+D}$$

27. (a)

In the circuit, we have

$$D_0 = \overline{Q_1 Q_2} = \overline{Q}_1 + \overline{Q}_2$$
$$D_1 = Q_0$$
$$D_2 = Q_1$$

The truth table for the circuit is obtained below.

	Present State			Inputs			Next State		
CLK number	Q ₂	Q ₁	Q ₀	D ₂	<i>D</i> ₁	<i>D</i> ₀	Q_2^+	Q_1^+	Q_0^+
initial	0	0	0	-	-	-	-	-	-
1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	1	1	0	1	1
3	0	1	1	1	1	1	1	1	1
4	1	1	1	1	1	0	1	1	0

After 4 clock pulses, output is $Q_2 Q_1 Q_0 = 110$

28. (c)

Redrawing the digital circuit

From the figure we get,

$$Y = A_0 \oplus B_0 \oplus A_1 \oplus B_1 \oplus A_2 \oplus B_2$$

India's Best Institute for IES, GATE & PSUs

So, Y is XOR of six boolean variables and Y will be 1 when odd number of variable are 1. Thus there will

be
$$\frac{2^6}{2} = 32$$
 cases for the output to be 1.

29. (c)

Q_0	Q ₁	J_0	K_0	J_1	<i>K</i> ₁	Q_{0}^{+}	Q_1^+	
0	0	1	1	0	1	1	0	b
1	0	1	1	1	0	0	1	> MOD = 3
0	1	0	1	0	1	0	0)
0	0	1	1	0	1	1	0	
1	0	1	1	1	0	0	1	
0	1	0	1	0	1	0	0	

30. (b)

Since its an inverting amplifier,

 $V_{\rm out} = -9.375 \, {\rm V} \qquad {\rm when} \ |V_{\rm out}| = 9.375 \, {\rm V}$ maximum output means all bits are 1

i.e., $b_0 b_1 b_2 \dots b_n = 1111 \dots 1$

$$V_{\text{out}} = -V\left(\frac{R}{R}b_0 + \frac{R}{2R}b_1 + \frac{R}{4R}b_2 + \frac{R}{8R}b_3 \dots + \frac{R}{2^{n-1}R}b^n\right)$$

-9.375 = $-5\left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}}\right)$
 $1.875 = \frac{\left(1 - \left(\frac{1}{2}\right)^n\right)}{1 - \frac{1}{2}}$
 $\frac{1}{2} \times 1.875 = 1 - \left(\frac{1}{2}\right)^n$
 $\left(\frac{1}{2}\right)^n = 1 - \frac{1}{2} \times 1.875 = 0.0625 = \frac{1}{16}$
 $2^n = 16$
 $n = 4$

SO,