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DE TAILED EXPL ANATIONS

1.1.1.1.1. (a)(a)(a)(a)(a)
X → Y is false only when X is True and Y is false. By substituting the truth values of X and Y in S1 and S2

we find that both S1 and S2 are False.
Note:Note:Note:Note:Note: X ↔ Y is True only when both X and Y have same truth values.

2.2.2.2.2. (b)(b)(b)(b)(b)
Number of ways of distributing 5 blue pens to 6 children
where n = 5, r = 6

5+6–1C5 = 10C5

Number of ways of distributing 6 black pens to 6 children
6+6–1C6 = 11C6

∴ Total number of ways = 10C5 × 11C6 = 116424

3.3.3.3.3. (d)(d)(d)(d)(d)
The statement “not every P is Q” can be written as “there exist a P which is not Q”.

i.e., (P( ) Q( ))∃ ∧ ¬x x x  which is same as option (a), (b) and (c).

4.4.4.4.4. (d)(d)(d)(d)(d)
The upper bounds of {1, 3, 4, 6} are 6, 8 and 9.
Hence there are only 3 upper bounds.

5.5.5.5.5. (a)(a)(a)(a)(a)
Clearly, an = n + 1
⇒ an–1 = n
⇒ an–2 = n – 1
⇒ an = 2an–1 – an–2 [∵ 2(n) – (n – 1) = n + 1]

6.6.6.6.6. (d)(d)(d)(d)(d)
f : A → B is bijective.
⇒ f : A → B is one-one (injective) f onto (surjective)
1.1.1.1.1. f : A → B is one-one ⇒ f –1 : B → A exists and it is unique.

⇒ f –1 is also one-one ...(1)
2.2.2.2.2. f : A → B is onto ⇒ f(A) = B

⇒ A = f –1(B) ororororor f –1(B) = A ⇒ f –1: B → A is also onto ...(2)
from (1) and (2) f–1 : B → A is bijective.

7.7.7.7.7. (d)(d)(d)(d)(d)
Complete graph has nC2 edges (worst case) to make a connected graph atmost (n – 1) edges required.
To make it disconnected graph should contain (n – 2) edges.

⇒

m = nC2 = 4C2 = 6 edges
nC2 – n + 2 = 6 – 4 + 2 = 4 edges deleted

∴ (m – n + 2) edges deletion always guarantee that any graph will become-disconnected.
i.e. 10 – 6 + 2 = 6 edges
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8.8.8.8.8. (a)(a)(a)(a)(a)
Total number of element in A × A × A × A = x4

⇒ Power set of A × A × A × A = 
4

2x .

9.9.9.9.9. (b)(b)(b)(b)(b)

f : A → B

g : B → C is injection: , ( )b B g b c∀ ∈ =  distinct images in C.

g�f : A → C is surjection

g (f (a)) = c

⇒ g (f (a)) = g(b)

∃a∈A

∴ f (a) = b

So, f : A → B is surjection.

10.10.10.10.10. (b)(b)(b)(b)(b)
Let = (1 + x + x + x3 + ...... + ....)2

=
2

2 2 1

0

1
(1 )

1
r r

r
r

C
∞

− − +

=

  = − = − 
∑x x

x

the coefficient of x20 is equal to = 2–1+20C20 = 21C20 = 
2! 21

20! 1!
=

∗
.

11.11.11.11.11. (c)(c)(c)(c)(c)

1 + x + x2 + x3 +...+xn =
11

1

n+−
−
x

x
[∵ C → 3]

1 + x + x2 + x3 +...∝ =
1

1− x
[∵ B → 1]

1

0

n r r
r

r
C

∝
− +

=
⋅∑ x =

1

(1 )n− x
[∵ A → 2]

12.12.12.12.12. (b)(b)(b)(b)(b)

Total number of edges in complete graph of 6 vertices 
6(6 1)

2
−

 = 15.

∴ 15 – 7 = 8 edges are there in G .

13.13.13.13.13. (c)(c)(c)(c)(c)
Euler formula says
Number of regions (r) = Number of edges (e) – Number of vertices (n) + 2

r = e – n + 2 ...(1)

e =
2

n k⋅
 = 

8 11
2
×

 = 44

∴ r = 44 – 8 + 2 = 38 regions.
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14.14.14.14.14. (c)(c)(c)(c)(c)

Dirac’s theorem states that min degree(s) should be ≥ / 2n   . This is satisfied by only K3,3 and K3,4.
Note:Note:Note:Note:Note: Minimum degree for Km,n = min(m, n).
Every cycle in a bipartite graph is even and alternates between vertices from V1 and V2. Since a Hamilton
cycle uses all the vertices in V1 and V2, we have m = V1 = V2 = n.
This condition is satisfied by K3,3 only.
Therefore only K3,3 will have Hamiltonian cycle.

15.15.15.15.15. (d)(d)(d)(d)(d)
Let A = n, and B = m
In partial function every element in domain need not have a range in co-domain.
∴ Each element in A will have (m + 1) choices.
For n elements in A

 times

( 1)( 1)...( 1)
n

m m m+ + +��������������������� = (m + 1)n.

In this question, A = 4, B = 4
The number of partial functions from A to B are (4 + 1)4.
∴ (4 + 1)4 = 625

16.16.16.16.16. (c)(c)(c)(c)(c)
Let a, b, c be the number of balls distributed among 3 children respectively.
a + b + c = 8, a, b, c ≥ 2 and a, b, c ≤ 4
Let a = a′ + 2, b = b′ + 2, c = c′ + 2, a′, b′, c′ ≥ 0 and a′, b′, c′ ≤ 2
⇒ a′ + 2 + b′ + 2 + c′ + 2 = 8
⇒ a′ + b′ + c′ = 2
Since a′, b′, c′ ≥ 0 a′, b′, c′, can never exceed 2, such that above equation holds true.
This is equivalent to integral solutions of

x1 + x2 + x3+ . . . xn = r ,

x1, x2, x3, . . . xn ≥ 0

which is equal to n+r–1Cr

n = 3, r = 2 ∴ n+r–1Cr = 3+2–1C2 = 4C2

4C2 =
4 3

6
2
× =

17.17.17.17.17. (d)(d)(d)(d)(d)
The operation is not commutative as since upper and lower triangle is not same.
q ∗ p = p and p ∗ q = r
The operation is not associative as p ∗ (q ∗ r) ≠ (p ∗ q) ∗ r
LHS p ∗ r = s
RHS r ∗ r = p

18.18.18.18.18. (c)(c)(c)(c)(c)
The candidate is unsuccessful if he fails in 9 or 8 or 7or 6 or 5 papers.
∴ The number of ways to be unsuccessful

= 9C9 +
 9C8 +

 9C7 +
 9C6 +

 9C5 = 256

19.19.19.19.19. (b)(b)(b)(b)(b)
Let n = 2 ⇒ # vertices = 8 [∵ # vertices in G = 4n]
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1 2 3 4

5 6 7 8

⇒ 3 components [Note:Note:Note:Note:Note: For any n, the #components in G = 3]

1 1

2 2

3 3

V(C ) = {1, 3, 5, 7}  m  = 4
V(C ) = {2, 6}  m  = 2         max = 4
V(C ) = {4, 8}  m  = 2     

⇒ 
⇒ 
⇒ 

20.20.20.20.20. (d)(d)(d)(d)(d)
To check function is one-to-one:
⇒ f (x1) = f (x2)
⇒ f (x) = x2 + 1
⇒ x1

2 + 1 = x2
2 + 1

⇒ x1 = ± x1 here x1 has to images so, it is not one-to-one function.
To check function is onto:

y = x2 + 1

x = 2y −

So, range = y for y ≥ 1 ≠ z so, it is not onto.

21.21.21.21.21. (a)(a)(a)(a)(a)

A ∪ B = A B A B+ − ∩

= 10C3 + 10C3 – 0
= 2 × 10C3

=
10 9 8

2
1 2 3

× ×
×

× ×

= 30 × 8 = 240

22.22.22.22.22. (b)(b)(b)(b)(b)
Let p : GATE rank is needed

q : I will write the GATE exam
r : I will join in MADEEASY.

Given arguments:
PPPPP11111::::: If GATE rank is needed, i will not write GATE exam, if i do not join MADEEASY.

p → (~r → ~q) = (p ∧~r) → ~q
PPPPP22222::::: GATE rank is needed : p
PPPPP33333::::: I will join MADEEASY : r
Q:Q:Q:Q:Q: I will write the GATE exam : q
Inference is: (p ∧ ¬ r) → ¬ q

p
r
q
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We can also write the above inference as following: (p ∧ ¬ r)

[ ]( )(p ¬ )∧ → ¬ ∧ ∧ →r q p r q

If above proposition is tautology then given inference is valid.
((pr′)′ + q′)′ + p′ + r′ + q
= pr′q + p′ + r′ + q
= p′ + r′ + q which is consistency hence invalid.

23.23.23.23.23. (a)(a)(a)(a)(a)
Total number of terms = 8 + 1 = 9

The middle term is : 5th term
(x + y)n has (r + 1)th term as : nCr xn – r y r

[(4 + 1)th term] 5th term is:

48 4
8

4
3

3

−    −
     

x
x

yC
y

=
4 2 4

8
4 4 4 2

3
3
⋅

⋅ ⋅
⋅

x
x

yC
y

= 
2

8
4 2

⋅
x
y

C  = 
2

70 
  x
y

24.24.24.24.24. (b)(b)(b)(b)(b)
• One graph in which P < 2 i.e. their is no edge in the graph

• Second is 
 PCn  where P ≥ 2 where all vertex make complete graph. So, total number of such graphs

are

=
2 0

1 1 ( ) 1
K K

n n

C C
k k

n n n
= =

+ = + − −∑ ∑
= 2n – n

25.25.25.25.25. (a)(a)(a)(a)(a)
Put x = y and y = x at the and to get inverse function

y = 2.2x + 4x

⇒ x = 2.2y + 4y

⇒ x = 2.2y + (2y)2

⇒ x+1 = (2y)2 + 2.2y + 1
⇒ x+1 = (2y + 1)2

⇒ 1+x = 2y + 1

⇒ 2y = 1 1+ −x

⇒ log2y = ( )log 1 1+ −x

⇒ y log2 = ( )log 1 1+ −x

⇒ y =
( )log 1 1

log2

+ −x
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26.26.26.26.26. (b)(b)(b)(b)(b)
The problem corresponds to the number of non negative integral solutions to

x1 + x2 + x3 = 10 with the conditions,
0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 5
0 ≤ x3 ≤ 3

Generating functions are required, since the variables have an upper constraint
The generating function is
(1 + x + x2...)(1 + x + x2 + x3...+ x5)(1 + x +... x3)

=
1

1
 
  − x

61
1

 −
 − 

x
x

41
1

 −
 − 

x
x

=
( )( )

( )

6 4

3

1 1

1

− −

−

x x

x

= ( )4 6 10

0
1 3 1

∞

=
− − + − +∑x x x xr

r
r

rC

= ( )4 6 10

0
1 2

∞

=
− − + +∑x x x xr

r
r

r C

The coefficient of x10 in above generating function is 12C10 – 8C6 – 6C4 + 2C0 = 24.

27.27.27.27.27. (a)(a)(a)(a)(a)
There are n courses i.e. c1, c2, c3 ... cn.
The no. of ways to select toppers of course 1 = 2nc2 ways
The no. of ways to select toppers of course 2 = (2n – 2)c2 ways
The no. of ways to select toppers of course 3 = (2n – 4)c2 ways
The no. of ways to select toppers of course 4 = (2n – 6)c2 ways
...
The no. of ways to select toppers of course n = 2c2 ways
So total number of ways to assign 2n toppers for n courses are =

2nc2
 × (2n – 2)c2

× (2n – 4)c2
 .... × 2c2

=
(2 )!

2n
n

OROROROROR
This is ordered problem two divided ‘2n’ toppers to ‘n’ cource with each cource ‘2’ toppers

2n

2 2 22 2.....2

=
(2 )!

2n
n

28.28.28.28.28. (a)(a)(a)(a)(a)

T(n) – 9T(n – 1) + 20T(n – 2) = 0
Let an = T(n)
⇒ an – 9an–1 + 20an–2 = 0

t2 – 9t + 20 = 0
t2 + 5t – 4t + 20 = 0
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t(t – 5) – 4(t – 5) = 0
(t – 4)(t – 5) = 0

t = 4, 5
Homogenous equation become

an = c1. 5
n + c2.4

n ...(1)
Put n = 0 in eq. (1)

a0 = c1. 5
0 + c2.4

0

–3 = c1 + c2 ...(2)
Put n = 1 in eq. (1)

a1 = c1. 5
1 + c2.4

1

–10 = 5c1 + 4c2 ...(3)
Solving equation (2) and (3) and get c1 and c2

(c1 + c2 = –3)   × 5
5c1 + 4c2 = –10

  

1 2

1 2

2 1

5 5 15

5 4 10

5 and 2

c c

c c

c c

+ = −
+ = −

= − =

Put value of c1 and c2 in eq. (1)
an = 2.5n – 5.4n

29.29.29.29.29. (c)(c)(c)(c)(c)
S1 is true but converse of S1 is not true. (Dirac theorem)
S2 is true and converse of S2 is also true because G is connected graph. (Eular graph theoram)

30.30.30.30.30. (c)(c)(c)(c)(c)
Conjunction (∧) is commutative. Hence I is True.
Existential Quantifier (∃) is distributive over disjunction (∨) and not distributive over conjunction (∧). Hence
II is false.
If we simplify III we get ¬"x (ÿS (x) ∨ ¬ P (x)) which is equal to ∃x [S (x) ∧ P (x)] (same as given
expression).
Hence only I and III are equivalent.


