		CLASS TEST									
	S.No. : 01 SK1_CS_C_020919										
						Dise	crete Ma	athematics			
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612											
CLASS TEST											
2019-2020											
COMPUTER SCIENCE & IT											
			Date of Test : 02/09/2019								
ANS	WER KEY	>	Discret	e Math	ematics	5					
ANS 1.	SWER KEY (a)	>	Discret	e Math	ematics (c)	5 19.	(b)	25.	(a)		
ANS 1. 2.	SWER KEY (a) (b)	> 7. 8.	Discret (d) (a)	e Math 13. 14.	ematics (c) (c)	5 19. 20.	(b) (d)	25. 26.	(a) (b)		
ANS 1. 2. 3.	(a) (b) (d)	> 7. 8. 9.	Discret (d) (a) (b)	e Math 13. 14. 15.	ematics (c) (c) (d)	5 19. 20. 21.	(b) (d) (a)	25. 26. 27.	(a) (b) (a)		
ANS 1. 2. 3. 4.	5WER KEY (a) (b) (d) (d)	 7. 8. 9. 10. 	Discret (d) (a) (b) (b)	e Math 13. 14. 15. 16.	ematics (c) (c) (d) (c)	5 19. 20. 21. 22.	(b) (d) (a) (b)	25. 26. 27. 28.	(a) (b) (a) (a)		
ANS 1. 2. 3. 4. 5.	5WER KEY (a) (b) (d) (d) (a)	 7. 8. 9. 10. 11. 	Discret (d) (a) (b) (b) (c)	e Math 13. 14. 15. 16. 17.	ematics (c) (c) (d) (c) (d)	5 19. 20. 21. 22. 23.	(b) (d) (a) (b) (a)	25. 26. 27. 28. 29.	(a) (b) (a) (a) (c)		

DETAILED EXPLANATIONS

1. (a)

 $X \rightarrow Y$ is false only when X is True and Y is false. By substituting the truth values of X and Y in S₁ and S₂ we find that both S₁ and S₂ are False.

Note: $X \leftrightarrow Y$ is True only when both X and Y have same truth values.

2. (b)

Number of ways of distributing 5 blue pens to 6 children where n = 5, r = 6 ${}^{5+6-1}C_5 = {}^{10}C_5$

Number of ways of distributing 6 black pens to 6 children

 $^{6+6-1}C_6 = {}^{11}C_6$ ∴ Total number of ways = ${}^{10}C_5 \times {}^{11}C_6 = 116424$

3. (d)

The statement "not every P is Q" can be written as "there exist a P which is not Q". i.e., $\exists x(P(x) \land \neg Q(x))$ which is same as option (a), (b) and (c).

4. (d)

The upper bounds of {1, 3, 4, 6} are 6, 8 and 9. Hence there are only 3 upper bounds.

5. (a)

Clearly, $a_n = n + 1$ $\Rightarrow a_{n-1} = n$ $\Rightarrow a_{n-2} = n - 1$ $\Rightarrow a_n = 2a_{n-1} - a_{n-2}$ [:: 2(n) - (n-1) = n + 1]

6. (d)

 $\begin{array}{l} f: A \to B \text{ is bijective.} \\ \Rightarrow f: A \to B \text{ is one-one (injective) } f \text{ onto (surjective)} \\ \textbf{1.} f: A \to B \text{ is one-one} \qquad \Rightarrow f^{-1}: B \to A \text{ exists and it is unique.} \\ \Rightarrow f^{-1} \text{ is also one-one} \qquad \dots(1) \\ \textbf{2.} f: A \to B \text{ is onto} \qquad \Rightarrow f(A) = B \\ \Rightarrow A = f^{-1}(B) \text{ or } f^{-1}(B) = A \Rightarrow f^{-1}: B \to A \text{ is also onto} \qquad \dots(2) \end{array}$

from (1) and (2) $f^1: B \rightarrow A$ is bijective.

7. (d)

Complete graph has ${}^{n}C_{2}$ edges (worst case) to make a connected graph atmost (n – 1) edges required. To make it disconnected graph should contain (n – 2) edges.

India's Beet Institute for IES, GATE & PSUs

8. (a)

Total number of element in $A \times A \times A \times A = x^4$

 \Rightarrow Power set of $A \times A \times A \times A = 2^{x^4}$.

9. (b)

 $f: A \rightarrow B$

 $g: B \rightarrow C$ is injection: $\forall b \in B, g(b) = c$ distinct images in C.

 $g \circ f : A \to C$ is surjection

$$g(f(a)) = c$$

$$g(f(a)) = g(b)$$

$$\exists a \in A$$

$$f(a) = b$$

So, $f: A \rightarrow B$ is surjection.

10. (b)

Let

 \Rightarrow

...

$$= (1 + x + x + x^{3} + \dots + \dots)^{2}$$
$$= \left\{\frac{1}{1 - x}\right\}^{2} = (1 - x)^{-2} = \sum_{r=0}^{\infty} {}^{2 - 1 + r} C_{r} x^{r}$$

the coefficient of x^{20} is equal to $= {}^{2-1+20}C_{20} = {}^{21}C_{20} = \frac{2!}{20! * 1!} = 21.$

11. (c)

$$1 + x + x^{2} + x^{3} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \qquad [\because C \to 3]$$

$$1 + x + x^{2} + x^{3} + \dots = \frac{1}{1 - x} \qquad [\because B \to 1]$$

$$\sum_{r=0}^{\infty} {}^{n-1+r}C_{r} \cdot x^{r} = \frac{1}{(1 - x)^{n}} \qquad [\because A \to 2]$$

12. (b)

Total number of edges in complete graph of 6 vertices $\frac{6(6-1)}{2} = 15$.

 \therefore 15 – 7 = 8 edges are there in \overline{G} .

13. (c)

Euler formula says Number of regions (*r*) = Number of edges (*e*) – Number of vertices (*n*) + 2 r = e - n + 2 ...(1)

$$e = \frac{n \cdot k}{2} = \frac{8 \times 11}{2} = 44$$

r = 44 - 8 + 2 = 38 regions.

...

8 Computer Science & IT

14. (c)

Dirac's theorem states that min degree(s) should be $\geq \lfloor n/2 \rfloor$. This is satisfied by only K_{3,3} and K_{3,4}. *Note:* Minimum degree for K_{m n} = min(m, n).

Every cycle in a bipartite graph is even and alternates between vertices from V_1 and V_2 . Since a Hamilton cycle uses all the vertices in V_1 and V_2 , we have $m = |V_1| = |V_2| = n$.

This condition is satisfied by $K_{3,3}$ only.

Therefore only $K_{3,3}$ will have Hamiltonian cycle.

15. (d)

Let |A| = n, and |B| = m

In partial function every element in domain need not have a range in co-domain.

:. Each element in A will have (m + 1) choices.

For *n* elements in A

 $\frac{(m+1)(m+1)...(m+1)}{n \text{ times}} = (m+1)^n.$

In this question, |A| = 4, |B| = 4The number of partial functions from A to B are $(4 + 1)^4$. $\therefore (4 + 1)^4 = 625$

16. (c)

Let a, b, c be the number of balls distributed among 3 children respectively.

a + b + c = 8, a, b, $c \ge 2$ and a, b, $c \le 4$ Let a = a' + 2, b = b' + 2, c = c' + 2, a', b', $c' \ge 0$ and a', b', $c' \le 2$ $\Rightarrow a' + 2 + b' + 2 + c' + 2 = 8$ $\Rightarrow a' + b' + c' = 2$ Since a', b', c' ≥ 0 a', b', c', can never exceed 2, such that above eco

Since a', b', $c' \ge 0$ a', b', c', can never exceed 2, such that above equation holds true. This is equivalent to integral solutions of

$$x_{1} + x_{2} + x_{3} + \dots + x_{n} = r,$$

$$x_{1}, x_{2}, x_{3}, \dots + x_{n} \ge 0$$

ch is equal to ${}^{n+r-1}C_{r}$

$$n = 3, r = 2$$

 ${}^{4}C_{2} = \frac{4 \times 3}{2} = 6$

 $\therefore \ ^{n+r-1}C_r = {}^{3+2-1}C_2 = {}^4C_2$

17. (d)

whi

The operation is not commutative as since upper and lower triangle is not same.

q * p = p and p * q = rThe operation is not associative as $p * (q * r) \neq (p * q) * r$ LHS p * r = sRHS r * r = p

18. (c)

The candidate is unsuccessful if he fails in 9 or 8 or 7 or 6 or 5 papers.

... The number of ways to be unsuccessful

$$= {}^{9}C_{9} + {}^{9}C_{8} + {}^{9}C_{7} + {}^{9}C_{6} + {}^{9}C_{5} = 256$$

19. (b)

Let $n = 2 \implies \#$ vertices = 8 [:: # vertices in G = 4n]

 \Rightarrow 3 components

[*Note:* For any *n*, the #components in G = 3]

 $V(C_1) = \{1, 3, 5, 7\} \Rightarrow m_1 = 4$ $V(C_2) = \{2, 6\} \Longrightarrow m_2 = 2$ max = 4 $V(C_3) = \{4, 8\} \Longrightarrow m_3 = 2$

20. (d)

To check function is one-to-one:

$$\Rightarrow \qquad \qquad f(x_1) = f(x_2)$$

$$\Rightarrow \qquad f(x) = x^2 + 1 \Rightarrow \qquad x_1^2 + 1 = x_2^2 + 1$$

 \Rightarrow

 \Rightarrow $x_1 = \pm x_1$ here x_1 has to images so, it is not one-to-one function.

1

To check function is onto:

$$y = x^2 + 1$$
$$x = \sqrt{y-2}$$

So, range = |y| for $y \ge 1 \ne z$ so, it is not onto.

21. (a)

$$A \cup B| = |A| + |B| - |A \cap B|$$
$$= {}^{10}C_3 + {}^{10}C_3 - 0$$
$$= 2 \times {}^{10}C_3$$
$$= 2 \times \frac{10 \times 9 \times 8}{1 \times 2 \times 3}$$
$$= 30 \times 8 = 240$$

22. (b)

Let

р r q

q: I will write the GATE exam

r : I will join in MADEEASY.

Given arguments:

P1: If GATE rank is needed, i will not write GATE exam, if i do not join MADEEASY.

 $p \rightarrow (\sim r \rightarrow \sim q) = (p \land \sim r) \rightarrow \sim q$

P2: GATE rank is needed : p P3: I will join MADEEASY : r **Q:** I will write the GATE exam : q Inference is: $(p \land \neg r) \rightarrow \neg q$

We can also write the above inference as following: $(p \land \neg r)$

 $([(p \land \neg r) \to \neg q] \land p \land r) \to q$

If above proposition is tautology then given inference is valid.

((pr')' + q')' + p' + r' + q= pr'q + p' + r' + q= p' + r' + q which is consistency hence invalid.

23. (a)

Total number of terms = 8 + 1 = 9The middle term is : 5^{th} term $(x + y)^n$ has $(r + 1)^{\text{th}}$ term as : ${}^nC_r x^{n-r} y^r$ [$(4 + 1)^{\text{th}}$ term] 5^{th} term is:

$${}^{8}C_{4}\left(\frac{y\sqrt{x}}{3}\right)^{8-4}\left(\frac{-3}{x\sqrt{y}}\right)^{4}$$

$$= {}^{8}C_{4} \cdot \frac{y^{4} \cdot x^{2}}{3^{4}} \cdot \frac{3^{4}}{x^{4} \cdot y^{2}} = {}^{8}C_{4} \cdot \frac{y^{2}}{x^{2}} = 70 \left(\frac{y}{x}\right)^{2}$$

24. (b)

- One graph in which |P| < 2 i.e. their is no edge in the graph
- Second is $n_{C_{|P|}}$ where $|P| \ge 2$ where all vertex make complete graph. So, total number of such graphs are

$$= 1 + \sum_{k=2}^{n} n_{C_{k}} = 1 + \sum_{k=0}^{n} (n_{C_{k}}) - 1 - n$$
$$= 2^{n} - n$$

25. (a)

Put x = y and y = x at the and to get inverse function

$$y = 2.2^{x} + 4^{x}$$

$$\Rightarrow \qquad x = 2.2^{y} + 4^{y}$$

$$\Rightarrow \qquad x = 2.2^{y} + (2^{y})^{2}$$

$$\Rightarrow \qquad x+1 = (2^{y})^{2} + 2.2^{y} + 1$$

$$\Rightarrow \qquad \sqrt{x+1} = 2^{y} + 1$$

$$\Rightarrow \qquad \sqrt{x+1} = 2^{y} + 1$$

$$\Rightarrow \qquad 2^{y} = \sqrt{x+1} - 1$$

$$\Rightarrow \qquad \log 2^{y} = \log(\sqrt{x+1} - 1)$$

$$\Rightarrow \qquad y \log 2 = \log(\sqrt{x+1} - 1)$$

$$\Rightarrow \qquad y = \frac{\log(\sqrt{x+1} - 1)}{\log 2}$$

26. (b)

The problem corresponds to the number of non negative integral solutions to

$$\begin{array}{rcl} x_1 + x_2 + x_3 &=& 10 \mbox{ with the conditions,} \\ 0 &\leq& x_1 \leq 10 \\ 0 &\leq& x_2 \leq 5 \\ 0 &\leq& x_3 \leq 3 \end{array}$$

Generating functions are required, since the variables have an upper constraint The generating function is

$$(1 + x + x^2...)(1 + x + x^2 + x^3... + x^5)(1 + x + ... x^3)$$

$$= \left(\frac{1}{1-x}\right) \left(\frac{1-x^{6}}{1-x}\right) \left(\frac{1-x^{4}}{1-x}\right)$$
$$= \frac{\left(1-x^{6}\right)\left(1-x^{4}\right)}{\left(1-x\right)^{3}}$$
$$= \left(1-x^{4}-x^{6}+x^{10}\right)\sum_{r=0}^{\infty} 3-1+rC_{r}x^{r}$$
$$= \left(1-x^{4}-x^{6}+x^{10}\right)\sum_{r=0}^{\infty} r+2C_{r}x^{r}$$

The coefficient of x^{10} in above generating function is ${}^{12}C_{10} - {}^{8}C_{6} - {}^{6}C_{4} + {}^{2}C_{0} = 24$.

27. (a)

There are n courses i.e. $c_1, c_2, c_3 \dots c_n$.

The no. of ways to select toppers of course $1 = 2nc_2$ ways The no. of ways to select toppers of course $2 = (2n - 2)c_2$ ways The no. of ways to select toppers of course $3 = (2n - 4)c_2$ ways The no. of ways to select toppers of course $4 = (2n - 6)c_2$ ways

÷

The no. of ways to select toppers of course $n = 2c_2$ ways So total number of ways to assign 2n toppers for n courses are =

$$2n_{c_{2}} \times (2n-2)_{c_{2}} \times (2n-4)_{c_{2}} \dots \times 2_{c_{2}}$$
$$= \frac{(2n)!}{2^{n}}$$
OR

This is ordered problem two divided '2n' toppers to 'n' cource with each cource '2' toppers

$$= \frac{(2n)!}{2^{n}}$$

28. (a)

T(n) - 9T(n-1) + 20T(n-2) = 0Let $a_n = T(n)$ $\Rightarrow a_n - 9a_{n-1} + 20a_{n-2} = 0$ $t^2 - 9t + 20 = 0$ $t^2 + 5t - 4t + 20 = 0$

t(t-5) - 4(t-5) = 0	
(t-4)(t-5) = 0	
t = 4, 5	
Homogenous equation become	
$a_n = c_1 \cdot 5^n + c_2 \cdot 4^n$	(1)
Put $n = 0$ in eq. (1)	
$a_0 = c_1 \cdot 5^0 + c_2 \cdot 4^0$	
$-3 = c_1 + c_2$	(2)
Put $n = 1$ in eq. (1)	
$a_1 = c_1 \cdot 5^1 + c_2 \cdot 4^1$	
$-10 = 5c_1 + 4c_2$	(3)
Solving equation (2) and (3) and get c_1 and c_2	
$(C_1 + C_2 = -3) \times 5$	
$5c_1 + 4c_2 = -10$	
$5c_1 + 5c_2 = -15$	
$5c_1 + 4c_2 = -10$	
$c_2 = -5$ and $c_1 = 2$	
Put value of c_1 and c_2 in eq. (1)	
$a_n = 2.5^n - 5.4^n$	

29. (c)

S1 is true but converse of S1 is not true. (Dirac theorem) S2 is true and converse of S2 is also true because G is connected graph. (Eular graph theoram)

30. (c)

Conjunction (\land) is commutative. Hence I is True.

Existential Quantifier (\exists) is distributive over disjunction (\lor) and not distributive over conjunction (\land). Hence II is false.

If we simplify III we get $\neg \forall x (\neg S(x) \lor \neg P(x))$ which is equal to $\exists x [S(x) \land P(x)]$ (same as given expression).

Hence only I and III are equivalent.