
S.No. : 01 SK1_CS_W+Y_310819

Theory of Computation

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST
2019-2020

1. (c)

2. (c)

3. (c)

4. (b)

5. (a)

6. (b)

7. (c)

8. (b)

9. (a)

10. (a)

11. (c)

12. (b)

13. (c)

14. (d)

15. (b)

16. (d)

17. (a)

18. (c)

19. (c)

20. (a)

21. (b)

22. (c)

23. (b)

24. (a)

25. (b)

26. (b)

27. (c)

28. (b)

29. (d)

30. (c)

ANSWER KEY Theory of Computation

COMPUTER SCIENCE & IT

Date of Test : 31/08/2019

CLASS TEST

© Copyright :www.madeeasy.in

CT-2019 | CS • Theory of Computation 7

DETAILED EXPL ANATIONS

1.1.1.1.1. (c)(c)(c)(c)(c)
To reach a final state (c) it must cover minimum "01" as a substring.

1

0

0

0, 1

0, 1

1A B C

1*00*1(0 + 1)* will cover all strings containing '01'. The cycle between A and B will not affect. Equivalent
modified NFA will be same as given NFA.

1

0

0 0, 1

1A B C

2.2.2.2.2. (c)(c)(c)(c)(c)
Complement of above DFA is generate after changing the final state to non-final state and non-final state
to final state, which is given below

a a,b

q0 q1 q2 q4

b

b

a

a b aq3

b

This DFA is representing the strings which do not contain “baba” as substring.

3.3.3.3.3. (c)(c)(c)(c)(c)
Languages accepted by push down automata are closed under complementation.
Turing decidable languages are closed under union and Kleen star operation.
Recursive enumerable languages are not closed under complementation.

4.4.4.4.4. (b)(b)(b)(b)(b)
(a) Regular expression = 1*(1 + 0)* can generate string 101.
(b) Regular expression = 0*100+ generate all string which does not contain 101 as substring.
(c) Regular expression = 10*10 contain 1010 as string which can contain 101 as substring.
(d) Regular expression = 1*(01+0)* contain 101 as string which can contain 101 as substring.

5.5.5.5.5. (a)(a)(a)(a)(a)
L1 is DCFL ⇒ L2 is also DCFL
∴ L1 and L2 are DCFL but not regular.

6.6.6.6.6. (b)(b)(b)(b)(b)
Statement S1 and S3 are True.
S2 is false because all ∈-production can be removed from grammar only when the language do not
contain ∈-string but if language contain ∈-string then removal of the null productions is not possible.

7.7.7.7.7. (c)(c)(c)(c)(c)

(a) S → AB

A → aAε
B → bBε
⇒ L = {a*b*} is regular.

© Copyright :www.madeeasy.in

8 Computer Science & IT

(b) S → AaB

A → aABε
B → bBε
⇒ L = {a*b*ab*} is regular.

(c) S → aAε
A → SbAb

⇒ L = {ambnm<=n} is non-regular.

8.8.8.8.8. (b)(b)(b)(b)(b)
L2 = {an bn}, L1 = {a*b*}
L = (a*b*) ∩ ((a + b)* – {an bn}) = {ambnm! = n}

9.9.9.9.9. (a)(a)(a)(a)(a)
L ≤ PL′. Since L′ is semidecidable then L is semidecidable is one way theorem (semidecidability goes
backward).

10.10.10.10.10. (a)(a)(a)(a)(a)
If turing machine has no writing capability on tape then turn around capability of head is not useful. So it
accepts only regular language.

11.11.11.11.11. (c)(c)(c)(c)(c)

L = { }1,≥ >
nma n m n

⇒ L = { } { }1 2
2 3m ma m a m≥ ∪ ≥ ∪

⇒ L = { }2a ≥i i is a regular language.

A Ba

a

Ca

Number of states = 3.

12.12.12.12.12. (b)(b)(b)(b)(b)
The minimized DFA after combining the q1, q2 and q3 are given below.

q0 q1q q2 3 q4
a,b

b
a

a,b

13.13.13.13.13. (c)(c)(c)(c)(c)
L1 = {ai bj cki = j, j < k} is not CFL ∵ 2 comparisons occuring
L2 = {ai bj ck(i ≤ j) or (j ≤ i), j = k} only, comparison
L3 = {ambncndmm ≠ n} is not CFL cannot be done using PDA
L4 = {ai bj ck if (i = j) then k is even} is CFL only, comparison
∴ L2 and L4 are CFLs.

14.14.14.14.14. (d)(d)(d)(d)(d)
Strings of one length = 0 → Not possible
Strings of two length = 0 → Not possible

Strings of three length = 0
Strings of four length = abba ...(1 string)
Strings of five length = abbba, abbaa, aabba ...(3 strings)

Total 4 strings possible.

© Copyright :www.madeeasy.in

CT-2019 | CS • Theory of Computation 9

15.15.15.15.15. (b)(b)(b)(b)(b)

A

B

C

D

a

b

a

b

b

δ a b

A

B

C

D

{ }B { }C

{ } { }C,D

{B} { }

{ } { }

NFA :

Convert NFA into DFA as following

δ′ a b

{ }B

{ }C

{ }C,D

{ }B { }C{ }A

{ }C,D

{B} { }

{ } { }B

{ }

{ } { } { }

DFA:

After renaming the above states equivalent DFA is:

δ′ a b

B

C

D

B CA

B E

EB

FF

DFA:

E D

E

A

B

C

D

a a

b

a

a

b

b

b

E a, b

∴ Option (b) is correct.

16.16.16.16.16. (d)(d)(d)(d)(d)

q0 q0
0 q0

0 q0
0 q1

1 q2
1 q1

0 q0
0

String 0001100 accepted by FA.

17.17.17.17.17. (a)(a)(a)(a)(a)
Y = A ∪ L1 ∪ L2∪...Ln ∪ B
Y = Σ* ∪ L1 ∪ L2 ∪ ...Ln ∪ φ
Y = Σ* = (a+b)*

∴ Y is regular and infinite language.

18.18.18.18.18. (c)(c)(c)(c)(c)
Statement S1 is true.
Example:Example:Example:Example:Example: {a* bn cn d*n ≤ 2}, here comparison between ‘b’ and ‘c’ is finite but the language is infinite. So
it is regular language.
The statement S2 is true.
Given regular expression is infinite set (because of *) of finite strings. A regular expression can generate
any infinite length string (since string length always be finite but language can be infinite).

© Copyright :www.madeeasy.in

10 Computer Science & IT

19.19.19.19.19. (c)(c)(c)(c)(c)
S1:S1:S1:S1:S1: Pumping lemma is always used in negative sense to prove language is not regular.
S2:S2:S2:S2:S2: This is a relationship between DCFL and LR(k).
DCFL ↔ LR(k)
but for DCFL and LL(k)
LL(k) → DCFL
S2 also correct.

20.20.20.20.20. (a)(a)(a)(a)(a)

L = (bc)*a + b

f(a) = ε, f(b) = φ.(a+b)* = φ, f(c) = φ.a* = φ
f(L) = (f(b).f(c)) * f(a) + f(b) = (φ. φ) * ε + φ = φ*.ε = ε.ε = ε

21.21.21.21.21. (b)(b)(b)(b)(b)
The grammar generates the following language.

L(G) = {an bn cmn, m ≥ 0} ∪ {an bm cmn,m ≥ 0}
Which is a standard example of inherently ambiguous language i.e. no grammar is possible which is
unambiguous. Any string in this language is of the form of anbncn and will have 2 derivation trees. Whatever
be the grammar, one of these derivation trees will start with S → XC and another will start with S → AY.

22.22.22.22.22. (c)(c)(c)(c)(c)

A B C qf

ε ε, Z0/

Push a
Push b

$, Z / Z0 0
Skip a

Pop a for each a
Pop b for each b

a, /
b, /

ε ε
ε ε

L = ��
R

push skip pop

w w w (a b)* (a b)
  ∈ + ∈ + 
  

�������x x

23.23.23.23.23. (b)(b)(b)(b)(b)

A
(a, a, R) (b, b, R)

(a, a, R)

B C D
(B, B, R)

(b, b, R)

TM accepts L = {a+ b+} = {am bn  m, n ≥ 1}

24.24.24.24.24. (a)(a)(a)(a)(a)
The intersection of L1 and L2 is given by L1 ∩ L2 = {0n 1n 2nn > 0} which is well known CSL.

25.25.25.25.25. (b)(b)(b)(b)(b)
L = {0w1 | w∈(0 + 1)*} = 0(0 + 1)*1

A

0

B

rej

1

0

1

C1

0, 1

0

4 states in minimized DFA. Hence four equivalence classes for L.

© Copyright :www.madeeasy.in

CT-2019 | CS • Theory of Computation 11

26.26.26.26.26. (b)(b)(b)(b)(b)
Assume that there are two palindrome strings one of them is even palindrome and one is odd palindrome
i.e. abba and ababa respectively. The grammar will not generate both the strings. The even palindrome
contain equal number of ‘a’ and ‘b’ here. So option ‘a’ and ‘c’ are not correct.
The grammar will generate all strings over ‘a’ and ‘b’ that are not palindrome.

Therefore (b) is true since it will generate all strings which are not palindrome.

27.27.27.27.27. (c)(c)(c)(c)(c)
This language contains all the strings that either begin or end with 00 or with 11. So the set of strings that
will be accepted by DFA are 11010, 001, 1011, 10100,...
The final state will be the state in which we land when the beginning of strings either 00 or 11 and states
in which we land when the end of DFA is either 00 or 11.
DFA of the language is given below.

1
0

1 10 0

010

0 1

1 0

0,1

1

1

2

3 4

5

6

7

8

28.28.28.28.28. (b)(b)(b)(b)(b)

RE =
(aa abb) (a b ba) (a b)

aa a or b a or b

+ + ++ + + +

aaaa

aaab
 are minimal strings for RE

aaba

aabb







∴ 4 strings are possible.

29.29.29.29.29. (d)(d)(d)(d)(d)
L1 = a*b* ⇒ L1* = (a* b*)* = (a + b)*
L2 = {ab}
L1* ∩ L2 = (a + b)* ∩ {ab} = {ab}
L3 = Prefix (L1* ∩ L2) = {∈, a, ab}

30.30.30.30.30. (c)(c)(c)(c)(c)

q0 q1 q2
(a, x, R) (b, y, L)

(B, B, R)

(x, x, R)(y
, y

, R
)

(y, y, R)
(a, a, R)

(a, a, L)
(y, y, L)

q3

qf

