CLASS TEST						S.No. : 05 SK1_CE_C_310819 Highway Engineering			
Image: Ensurance Ensuranc									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
CIVIL ENGINEERING									
			Date	of Test	: 31/	08/2019			
ANS	SWER KEY	Highway Engineering							
1.	(d)	7.	(b)	13.	(d)	19.	(a)	25.	(c)
2.	(d)	8.	(c)	14.	(b)	20.	(a)	26.	(b)
3.	(a)	9.	(d)	15.	(d)	21.	(c)	27.	(a)
4.	(a)	10.	(b)	16.	(c)	22.	(b)	28.	(a)
5.	(c)	11.	(b)	17.	(a)	23.	(a)	29.	(d)
6.	(b)	12.	(a)	18.	(c)	24.	(d)	30.	(c)

DETAILED EXPLANATIONS

1. (d)

For mixed traffic conditon, super elevation is provided for 75% of design speed. Emergency escapes are provided on down grades so that in case of brake failure or system failure vehicle can be controlled.

2. (d)

3. (a)

Given:

 $n_a = 21, n_w = 350, V = 70$ kmph

$$T_{\rm w} = T_a = \frac{8}{70}$$
 hr
 $q = \frac{n_a + n_w}{T_a + T_w} = \frac{350 + 21}{\left(\frac{8}{70} + \frac{8}{70}\right)} \simeq 1624$ vehicles/hr

4. (a)

Assuming V volume passed in peak hour. And for minimum peak hour volume, all volume of that hour, was passed in 10 min only.

So, Min PHF10 min =
$$\frac{V}{\left(\frac{60}{10}\right) \times V} = \frac{1}{6} = 0.167$$

5. (c)

Time mean speed,

$$V_t = \frac{46 + 56 + 40 + 92 + 63}{5} = 59.4 \text{ km/hr}$$

Space mean speed,

$$V_S = \frac{5}{1/46 + 1/56 + 1/40 + 1/92 + 1/63}$$

= 54.74 km/hr

So, difference between time mean and space mean velocity

$$= V_t - V_s = 59.4 - 54.74 = 4.66$$
 km/hr

6. (b)

Capacity of the road, if only cars use the road a = KV

$$q = \left(\frac{1000}{5}\right) \times 80 \times 4 = 64000 \text{ vehicles/hr}$$

Capacity of the road, if only trucks use the road

$$= \left(\frac{1000}{10}\right) \times 40 \times 4 = 16000 \text{ vehicles/hr}$$
PCU of the truck =
$$\frac{64000}{16000} = 4$$

India's Best Institute for IES, GATE & PSUs

7. (b)

The theoretical specific gravity of the mix is given by,

$$G_t = \frac{100}{\frac{50}{2.56} + \frac{38.20}{2.65} + \frac{4.70}{2.70} + \frac{7.10}{1.10}} = 2.37$$

8. (c)

Capacity = Velocity × Density

$$C = u \times k = 65 k - 0.65 k^2$$

Now,

$$\frac{dC}{dk} = 65 - 1.3 \ k = 0$$

$$k = \frac{65}{1.3} = 50$$

Capacity, $C = 65 \times 50 - 0.65 \times 50^2 = 1625$ veh/hr

9. (d)

...

10. (b)

The modulus of subgrade reaction for 76 cm diameter rigid plate,

$$k_1 = \frac{P}{\Delta} = \frac{0.88 \text{ kg/cm}^2}{0.125 \text{ cm}} = 7.04 \text{ kg/cm}^3$$

:. Modulus of subgrade reaction for standard plate of diameter 75 cm.

$$k = \frac{k_1 a_1}{a} = \frac{7.04 \times 76}{75} = 7.13 \text{ kg/cm}^3$$

11. (b)

$$\begin{split} &\delta = 2.5 \text{ mm}, \, \sigma = 3.5 \text{ N/mm}^2 = 35 \text{ kg/cm}^2 \\ &\delta = 5.0 \text{ mm}, \, \sigma = 7.0 \text{ N/mm}^2 = 70 \text{ kg/cm}^2 \\ &\text{Standard load,} \\ &\text{At 2.5 mm penetration} = 70 \text{ kg/cm}^2 (1370 \text{ kg}) \\ &\text{At 5.0 mm penetration} = 105 \text{ kg/cm}^2 (2055 \text{ kg}) \end{split}$$

$$= \text{Maximum} \begin{cases} \frac{35}{70} \times 100 = 50\% \\ \frac{70}{105} \times 100 = 66.66\% \end{cases}$$

 \therefore CBR(%) = 66.66%

12. (a)

Practical capacity of rotary (Q_P),

$$Q_{p}(\text{veh/hr}) = \frac{280w\left(1+\frac{\rho}{w}\right)\left(1-\frac{P_{\text{max}}}{3}\right)}{\left(1+\frac{w}{L}\right)}$$

www.madeeasy.in

...

...

 $Q_{P} \propto \left(1 - \frac{P_{\text{max}}}{3}\right)$ $\frac{Q_{P_{1}}}{Q_{P_{2}}} = \frac{\left(1 - \frac{P_{\text{max}}}{3}\right)_{1}}{\left(1 - \frac{P_{\text{max}}}{3}\right)_{2}}$

$$\Rightarrow \qquad \frac{2500}{Q_{P_2}} = \frac{\left(1 - \frac{0.45}{3}\right)}{\left(1 - \frac{0.6}{3}\right)}$$

13. (d)

 \Rightarrow

$$G_t = \frac{W_1 + W_2}{\frac{W_1}{G_1} + \frac{W_2}{G_2}} = \frac{100}{\frac{97.5}{2.5} + \frac{2.5}{1}} = 2.4096$$

Theoretical unit weight = $2.4096 \times 1000 = 2409.6 \text{ kg/m}^3 \simeq 2410 \text{ kg/m}^3$

 Q_{P_2} = 2352.94 \simeq 2353

14. (b)

Overtaking sight distance for one way traffic = $d_1 + d_2$ $d_1 = 0.278 V_b \times t_R = 0.278 \times 50 \times 2 = 27.8 \text{ m}$ $d_2 = 0.278 V_b T + 2S$ $S = 0.7 V_b + 6 = 0.2 \left(\frac{50 \times 1000}{3600}\right) + 6 = 16 \text{ m}$ $T = \sqrt{\frac{4s}{a}} = \sqrt{\frac{4 \times 16}{1}} = 8 \text{ sec}$ $d_2 = 0.278 \times 50 \times 8 + 2 \times 16 = 143.2 \text{ m}$ $OSD = d_1 + d_2 = 27.8 + 143.2 = 171 \text{ m}$

15. (d)

Modulus of subgrade reaction k_1 for 30 cm diameter plate is

$$k_1 = \frac{P_1}{\Delta} = \frac{2250\pi}{\pi \times 15^2 \times 0.125} = 80 \text{ kg/cm}^3$$

Modulus of subgrade reaction k for standard plate of diameter 75 cm is

$$k_2 = \frac{80 \times 30}{75} = 32 \text{ kg/cm}^3$$

16. (c)

$$L = 2 \left[\frac{Nv^3}{C} \right]^{1/2}$$

$$N = \frac{1}{30} - \left(-\frac{1}{40} \right) = \frac{1}{30} + \frac{1}{40} = \frac{7}{120} = 0.0583$$

$$L = 2 \left[\frac{0.0583 \times (0.278 \times 70)^3}{0.6} \right]^{1/2} = 53.52 \text{ m}$$

...

17. (a)

The individual thickness of each layer is converted to their respective gravel equivalent. We know that,

For bituminous concrete,

$$\frac{t_g}{t} = \left(\frac{C}{C_g}\right)^{\frac{1}{5}}$$
$$\frac{t_g}{16} = \left(\frac{80}{20}\right)^{\frac{1}{5}}$$

 \Rightarrow *.*..

$$t_g = 21.11 \,\mathrm{cm}$$

For base course,

 \Rightarrow

$$\frac{t_g}{15} = \left(\frac{180}{20}\right)^{\frac{1}{5}}$$
$$t_g = 23.28 \,\mathrm{cm}$$

For sub-base course,

$$\frac{t_g}{10} = \left(\frac{C}{C_g}\right)^{\frac{1}{5}} = \left(\frac{20}{20}\right)^{\frac{1}{5}}$$

 $\Rightarrow t_g = 10 \text{ cm}$ Actual pavement thickness = 16 + 15 + 20 = 41 cm

 $C_{eq} = 82.17$

This is equivalent to gravel thickness

Therefore, C equivalent,
$$\frac{t_g}{t_{eq}} = \left(\frac{C_{eq}}{C_g}\right)^{\frac{1}{5}}$$

 $\Rightarrow \qquad \frac{54.39}{41} = \left(\frac{C_{eq}}{20}\right)^{\frac{1}{5}}$

18. (c)

 \Rightarrow

Radius of relative stiffness, $l = \left[\frac{Eh^3}{12k(1-\mu^2)}\right]^{\frac{1}{4}}$ Modulus of subgrade reaction,

 $k = \frac{\text{Load}}{\text{Penetration}} = \frac{1.4}{1.25 \times 10^{-1}} = 11.2 \text{ kg/cm}^3$ $l = \left(\frac{3 \times 10^5 \times 20^3}{12 \times 11.2(1 - 0.16^2)}\right)^{\frac{1}{4}} = 65.43 \text{ cm}$

19. (a)

Assume S is less than L

$$L = \frac{NS^2}{4.4}$$
$$N_1 = \frac{1}{50} = 0.02$$

...

...

$$N_2 = -\frac{1}{40} = -0.025$$
$$N = N_1 - N_2 = 0.02 - (-0.025) = 0.045$$
$$L = \frac{0.045 \times 180 \times 180}{4.4} = 331.36 \text{ m}$$

Hence assumption is correct. Equation of parabola is,

$$y = \frac{Nx^2}{2L} = \frac{0.045x^2}{2 \times 331.36} = 6.79 \times 10^{-5} x^2$$

20. (a)

Given:

A = 5500 vehicles, r = 6.5% per annum, construction period = 3 years Traffic flow after 3 year,

$$= 5500 \times \left(1 + \frac{6.5}{100}\right)^3 = 6643.72 \text{ cvpd}$$

$$\simeq 6644 \text{ cvpd}$$

$$\text{VDF} = \left(\frac{L}{L_s}\right)^4 = \left[\frac{3000}{8160}\right]^4 = 0.018, \text{ where } L = \frac{2500 + 3500}{2} = 3000 \text{ kg}$$
Equivalent axle load = $365 \times 6643.72 \times \frac{\left[(1 + 0.065)^{15} - 1\right]}{\left(\frac{6.5}{100}\right)} \times 0.018 \times 1 = 1.05 \text{ msa}$

22. (b)

Maximum expansion allowed,

$$\delta = \frac{3}{2} = 1.5 \text{ cm} = 1.5 \times 10^{-2} \text{ m}$$

 $\Delta T = T_2 - T_1 = 30^{\circ}\text{C}$

Coefficient of thermal expansion,

$$\alpha = 10 \times 10^{-6} / ^{\circ} C$$

:. Spacing of expansion joint, L

$$= \frac{\delta}{\alpha(T_2 - T_1)} = \frac{1.5 \times 10^{-2}}{10 \times 10^{-6} \times 30} = 50 \text{ m}$$

23. (a)

The capacity of rotary,
$$Q_P = \frac{280w \left(1 + \frac{e}{w}\right) \left(1 - \frac{p}{3}\right)}{\left(1 + \frac{w}{L}\right)}$$

$$Q_{p} = \frac{280 \times 15 \times \left(1 + \frac{5}{15}\right) \left(1 - \frac{0.60}{3}\right)}{\left(1 + \frac{15}{75}\right)} = 3733.33 \simeq 3733 \text{ PCU/hr}$$

24. (d)

 \Rightarrow

$$P(n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

where,

 \Rightarrow

MADE EASY

at Institute for IES, GATE & PSUs

$$\lambda = Average rate of arrival,$$

t = time interval

$$n =$$
 Number of vehicles

P(n), is the probability of *n* events (vehicle arrival) in some time interval *t*.

$$\lambda = \frac{200}{30 \times 60} = \frac{1}{9} \text{ vehicle/sec}$$

Now probability that the headway (into arrival time) greater than or equal to 5 sec is

$$P(n=0) = \frac{\left(\frac{1}{9} \times 5\right)^0 \times e^{-\left(\frac{1}{9} \times 5\right)}}{0!} = e^{-\frac{5}{9}} = 0.573$$

25. (c)

Braking distance for travelling upgrade,

$$S_1 = \frac{V^2}{254(f+0.01n)}$$

Braking distance for travelling downgrade

$$S_2 = \frac{V^2}{254(f - 0.01n)}$$

 $S_2 = 2S_1$

Give,

$$\Rightarrow \qquad \frac{1}{(f-0.01n)} = \frac{2}{f+0.01n}$$
$$\Rightarrow \qquad 2f-0.02 \ n = f+0.01 \ n$$
$$\Rightarrow \qquad n = \frac{f}{0.03} = \frac{0.3}{0.03} = 10\%$$

26. (b)

$$C_0 = 45 \sec$$

$$g_i = G_i + A_i - t_L$$

$$= 30 + 4 - 2 - 2 = 30 \sec$$
Green ratio
$$= \frac{g_i}{C_0} = \frac{30}{45} = \frac{2}{3}$$
Traffic capacity of lane
$$= S \times \frac{g_i}{C_0} = \frac{3600}{2.5} \times \frac{2}{3} = 960 \text{ veh/hr}$$

27. (a)

Normal flow on road A, $q_a = 600$ PCU/hr Normal flow on road B, $q_b = 400$ PCU/hr Saturation flow on road A, $S_a = 1600$ PCU/hr Saturation flow on road B, $S_b = 1200$ PCU/hr All red time, R = 12 sec. Number of phases, n = 2 $y_a = \frac{q_a}{S_a} = \frac{600}{1600} = 0.375$ $y_b = \frac{q_b}{S_b} = \frac{400}{1200} = 0.333$ $Y = y_a + y_b = 0.375 + 0.333 = 0.708$ Total lost time, $L = 2n + R = 2 \times 2 + 12 = 16$ sec. Optimum cycle time, $C_o = \frac{1.5L + 5}{1 - Y}$ $= \frac{1.5 \times 16 + 5}{1 - 0.708} = 99.315$ sec $\simeq 100$ sec

28. (a)

Traffic capacity and traffic volume have same units. Traffic volume tend to zero when traffic density reaches to maximum.

29. (d)

Grade compensation =
$$\frac{30+R}{R} \le \frac{75}{R}$$

= $\frac{30+100}{100} \le \frac{75}{100} = 1.3 \ge 0.75$
1.3 > 0.75

 \therefore Grade compensation = 0.75

Note : Here grade compensation is asked, not the compensated gradient, so no need to subtract it from the given grade.

30. (c)

As

Green-Shield model (linear model) is given by

$$v = v_f \left(1 - \frac{k}{k_j} \right)$$

 \Rightarrow

$$\frac{v}{v_f} + \frac{k}{k_j} = 1$$

 $\Rightarrow \qquad \qquad \forall k_j + kv_f = v_f k_j$