

Q.No. 1 to Q.No. 10 carry 1 mark each

Q. 1 The value of X and Y is
$(1110011.0011)_{2}=(X)_{8}=(Y)_{10}$
(a) $X=163.14 \quad Y=110.3$
(b) $X=163.14 \quad Y=115.1875$
(c) $X=155.30 \quad Y=110.3$
(d) $X=155.3 \quad Y=115.1875$
Q. 2 The output of the 4-bit comparator is

(a) $X=1, Y=0, Z=0$
(b) $X=0, Y=1, Z=0$
(c) $X=1, Y=0, Z=1$
(d) $X=0, Y=0, Z=1$
Q. 3 Identify the state of the flip-flops $Q_{2} Q_{1}$ after 3 clock cycles if the initial state, $Q_{1} Q_{2}=01$.

(a) 10
(b) 11
(c) 01
(d) 00
Q. 4 The final expression Y at the output of the MUX is

(a) $A+B$
(b) A
(c) $A+\bar{B}$
(d) \bar{B}
Q. 5 The input clock frequency to an 8-bit successive approximation ADC is 5 MHz . The time required to convert 16 V analog input into equivalent digital output is
(a) $0.5 \mu \mathrm{sec}$
(b) $1 \mu \mathrm{sec}$
(c) $1.6 \mu \mathrm{sec}$
(d) $2.5 \mu \mathrm{sec}$
Q. 6 The circuit shown below is used the implement the function $Z=f(A, B)=\bar{A}+B$. The values of P and Q are:

(a) $P=A, Q=B$
(b) $P=B, Q=\bar{A}$
(c) $P=\bar{B}, Q=0$
(d) $P=0, Q=\bar{B}$
Q. 7 A 4-bit ripple counter and 4-bit synchronous counter are made by flip-flops having propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively then,
(a) $R=10 \mathrm{~ns}, S=40 \mathrm{~ns}$
(b) $R=40 \mathrm{~ns}, S=10 \mathrm{~ns}$
(c) $R=10 \mathrm{~ns}, S=30 \mathrm{~ns}$
(d) $R=30 \mathrm{~ns}, S=10 \mathrm{~ns}$
Q. 8 The MUX shown below is 4×1 multiplexer. The output for an input of A, B, C will be

(a) $A B C$
(b) $A \oplus B \oplus C$
(c) $A \odot B \odot C$
(d) $A+B+C$
Q. 9 The circuit shown below represents a Boolean expression. Number of minterms present in the Boolean expression are

(a) 4
(b) 6
(c) 8
(d) 12
Q. 10 In the given counter, each flip-flop has a propagation delay of 8 ns .

The worst-case (longest) delay time from a clock pulse to the arrival of the counter in a given state is
(a) 10 nsec
(b) 12 nsec
(c) 15 nsec
(d) 24 nsec

Q.No. 11 to Q.No. 30 carry 2 marks each

Q. 11 Which of the following represents the correct state diagram for circuit given with input X and output Y ?

(a)

(b)

(c)

(d)

Q. 12 Consider the Boolean expression given below

$$
Y=\overline{A \bar{B} C+\overline{\bar{A} B(C+D)+B \bar{C}}}
$$

The simplified Boolean expression for Y is
(a) $\bar{A} \bar{B}+B C$
(b) $A \bar{B}+\bar{B} C$
(c) $\bar{A} B+\bar{B} \bar{C}$
(d) $\bar{A} B+B \bar{C}$
Q. 13 Identify the type of asynchronous counter and the MOD number. Assume initial state $Q_{2} Q_{1} Q_{0}$ to be 000 .

(a) Up-counter, MOD-3
(b) Down-counter, MOD-5
(c) Up-counter, MOD-5
(d) Down-counter, MOD-3
Q. 14 The output Y can be represented by

(a) $B(A+B)(\bar{A}+\bar{B})$
(b) $(A+B)(\bar{A}+\bar{B}) A$
(c) $(A+\bar{B})(\bar{A}+B)$
(d) $(\bar{A}+\bar{B})(\bar{A}+B)$
Q. 15 In the circuit given below, initial state $Q_{0} Q_{1} Q_{2}=000$. The time taken by state $Q_{2} Q_{1} Q_{0}$ to become 110 is

(a) $0.1 \mu \mathrm{sec}$
(b) $0.2 \mu \mathrm{sec}$
(c) $0.3 \mu \mathrm{sec}$
(d) $0.4 \mu \mathrm{sec}$
Q. 16 If the input to the ladder DAC is 1000 . What is the value of output voltage V_{0} if $R=5 \mathrm{k} \Omega$ and $R_{f}=10 \mathrm{k} \Omega$?

(a) -2.5 V
(b) 2.5 V
(c) -5 V
(d) 5 V
Q. 17 In the given circuit, V_{0} is the output, A and B are the inputs. The output can take the values 0,1 and high impedance state (Z).
The output of the given circuit is

(a) $V_{0}=0$ if $A B=00$
(b) $V_{0}=1$ if $A B=11$
(c) $V_{0}=1$ if $A B=10$
(d) $V_{0}=Z$ if $A B=10$
Q. 18 What is the state $Q_{1} Q_{0}$ of the counter after 3 clock cycles, given initial state of the counter $Q_{0} Q_{1}=10$?

(a) 11
(b) 10
(c) 01
(d) 00
Q. 19 The minimum number of 2-input NAND gates required to realise the minimized output expression Y of the given 4×1 MUX is

(a) 1
(b) 2
(c) 3
(d) 4
Q. 20 The propagation delay of $4 \times 1 \mathrm{MUX}$ is 8 ns and delay of NOR and NOT gates is 2 ns . For $A=1, B=0$ the output Y will be stable in

(a) 10 nsec
(b) 5 nsec
(c) 15 nsec
(d) 20 nsec
Q. 21 Assume $Y=f(A, B, C, D)$ the Boolean expression $Y=\Sigma m(1,3,7,11,15)+d(0,2,5)$ in its simplified form is given as,
(a) $C D+A B$
(b) $C D+\bar{A} \bar{B}$
(c) $A C+\bar{B} \bar{D}$
(d) $A C+B D$
Q. 22 The network shown below implements:

(a) NOR gate
(b) NAND gate
(c) XOR gate
(d) XNOR gate
Q. 23 The JK flip-flop shown below is initially cleared and then 5 clock pulses are applied, the sequence at the Q output will be

(a) 010000
(b) 011001
(c) 010010
(d) 010101
Q. 24 A full adder is realized using only 2 input NOR gates. The minimum number of NOR gates required to realize Sum and Carry out is
(a) 8
(b) 9
(c) 10
(d) 12
Q. 25 A 1-bit full-adder takes 20 ns to generate carry-out bit and 40 ns for the sum bit. The maximum rate of addition per second, when four 1-bit full adders are cascaded is
(a) 10×10^{6}
(b) 10×10^{4}
(c) 5×10^{6}
(d) 5×10^{4}
Q. 26 The three stage Johnson counter as shown in figure below is clocked at a constant frequency of 15 MHz from the starting state of $Q_{2} Q_{1} Q_{0}=101$. The frequency of output $Q_{2} Q_{1} Q_{0}$ will be

(a) 5 MHz
(b) 4.5 MHz
(c) 6 MHz
(d) 7.5 MHz
Q. 27 If (7.FD6) $)_{16}=(7.7726)_{x}$ and $(7864)_{10}=$ (1EB8) $_{y}$. Then the values of x and y are respectively
(a) 4 and 8
(b) 10 and 16
(c) 8 and 16
(d) 8 and 8
Q. 28 The minimized expression for the Boolean function
$f(A, B, C, D)=\Sigma m(0,2,3,4,6,8,10,11)$
(a) $\bar{A} \bar{D}+\bar{B} D+\bar{B} C$
(b) $\bar{A} \bar{D}+B \bar{D}+B \bar{C}$
(c) $\bar{A} \bar{D}+\bar{B} \bar{D}+B C$
(d) $\bar{A} \bar{D}+\bar{B} \bar{D}+\bar{B} C$
Q. 29 The majority function is a Boolean function $f(x, y, z)$, that takes the value 1 whenever a majority of variables x, y, z are 1 . In the circuit diagram for the majority function shown below. The logic gates for the boxes labeled P and Q are, respectively

(a) AND, OR
(b) OR, AND
(c) EXOR, OR
(d) EXOR, AND
Q. 30 The circuit shown in figure below is,

Initially both flip-flops are at 00 . After two clock pulses, the content at $Q_{A} Q_{B}$ is
(a) 00
(b) 01
(c) 10
(d) 11

