

Q.No. 1 to Q.No. 10 carry 1 mark each

Q.1 The value of *X* and *Y* is

 $\begin{array}{l} (1110011.0011)_2 = (X)_8 = (Y)_{10} \\ (a) \ X = 163.14 \quad Y = 110.3 \\ (b) \ X = 163.14 \quad Y = 115.1875 \\ (c) \ X = 155.30 \quad Y = 110.3 \end{array}$

(d) X = 155.3 Y = 115.1875

Q.2 The output of the 4-bit comparator is

- (a) X = 1, Y = 0, Z = 0
 (b) X = 0, Y = 1, Z = 0
 (c) X = 1, Y = 0, Z = 1
- (d) X = 0, Y = 0, Z = 1

Q.3 Identify the state of the flip-flops Q_2Q_1 after 3 clock cycles if the initial state, $Q_1Q_2 = 01$.

Q.4 The final expression *Y* at the output of the MUX is

- **Q.5** The input clock frequency to an 8-bit successive approximation ADC is 5 MHz. The time required to convert 16 V analog input into equivalent digital output is
 - (a) 0.5 µsec (b) 1 µsec
 - (c) 1.6 µsec (d) 2.5 µsec

India's Best Institute for IES, GATE & PSUs

Q.6 The circuit shown below is used the implement the function $Z = f(A, B) = \overline{A} + B$. The values of *P* and *Q* are:

- (a) P = A, Q = B (b) P = B, $Q = \overline{A}$
- (c) $P = \overline{B}, Q = 0$ (d) $P = 0, Q = \overline{B}$
- **Q.7** A 4-bit ripple counter and 4-bit synchronous counter are made by flip-flops having propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be *R* and *S* respectively then,
 - (a) R = 10 ns, S = 40 ns
 - (b) R = 40 ns, S = 10 ns
 - (c) R = 10 ns, S = 30 ns
 - (d) R = 30 ns, S = 10 ns
- **Q.8** The MUX shown below is 4 × 1 multiplexer. The output for an input of *A*, *B*, *C* will be

Q.9 The circuit shown below represents a Boolean expression. Number of minterms present in the Boolean expression are

Q.10 In the given counter, each flip-flop has a propagation delay of 8 ns.

Q.No. 11 to Q.No. 30 carry 2 marks each

Q.11 Which of the following represents the correct state diagram for circuit given with input *X* and output *Y*?

© Copyright: **MADE EASY**

Q.12 Consider the Boolean expression given below

$$Y = \overline{A\overline{B}C + \overline{\overline{A}B(C+D) + B\overline{C}}}$$

The simplified Boolean expression for Y is

- (a) $\overline{A}\overline{B} + BC$ (b) $A\overline{B} + \overline{B}C$
- (c) $\overline{A}B + \overline{B}\overline{C}$ (d) $\overline{A}B + B\overline{C}$
- **Q.13** Identify the type of asynchronous counter and the MOD number. Assume initial state $Q_2Q_1Q_0$ to be 000.

- (a) Up-counter, MOD-3
- (b) Down-counter, MOD-5
- (c) Up-counter, MOD-5

(d) Down-counter, MOD-3

Q.14 The output *Y* can be represented by

(a) $B(A+B)(\overline{A}+\overline{B})$ (b) $(A+B)(\overline{A}+\overline{B})$ (c) $(A+\overline{B})(\overline{A}+B)$ (d) $(\overline{A}+\overline{B})(\overline{A}+B)$

Q.15 In the circuit given below, initial state $Q_0Q_1Q_2 = 000$. The time taken by state $Q_2Q_1Q_0$ to become 110 is

Q.16 If the input to the ladder DAC is 1000. What is the value of output voltage V_0 if $R = 5 \text{ k}\Omega$ and $R_f = 10 \text{ k}\Omega?$

Q.17 In the given circuit, V_0 is the output, A and B are the inputs. The output can take the values 0, 1 and high impedance state (Z).

The output of the given circuit is

(a) $V_0 = 0$ if AB = 00(c) $V_0 = 1$ if AB = 10

Q.19 The minimum number of 2-input NAND gates required to realise the minimized output expression *Y* of the given 4 × 1 MUX is

Q.20 The propagation delay of 4×1 MUX is 8 ns and delay of NOR and NOT gates is 2ns. For A = 1, B = 0 the output Y will be stable in

(a)	10 nsec	(b)	5 nsec

(c) 15 nsec (d) 20 nsec

- **Q.21** Assume Y = f(A, B, C, D) the Boolean expression $Y = \Sigma m(1, 3, 7, 11, 15) + d(0, 2, 5)$ in its simplified form is given as,
 - (a) CD + AB (b) $CD + \overline{A}\overline{B}$
 - (c) $AC + \overline{B}\overline{D}$ (d) AC + BD
- Q.22 The network shown below implements:

- (a) NOR gate (b) NAND gate
- (c) XOR gate (d) XNOR gate
- **Q.23** The JK flip-flop shown below is initially cleared and then 5 clock pulses are applied, the sequence at the *Q* output will be

- Q.24 A full adder is realized using only 2 input NOR gates. The minimum number of NOR gates required to realize Sum and Carry out is
 - (a) 8 (b) 9 (c) 10 (d) 12
- **Q.25** A 1-bit full-adder takes 20 ns to generate carry-out bit and 40 ns for the sum bit. The maximum rate of addition per second, when four 1-bit full adders are cascaded is (a) 10×10^6 (b) 10×10^4 (c) 5×10^6 (d) 5×10^4
- **Q.26** The three stage Johnson counter as shown in figure below is clocked at a constant frequency of 15 MHz from the starting state of $Q_2 Q_1 Q_0 = 101$. The frequency of output $Q_2 Q_1 Q_0$ will be

(c) 8 and 16 (d) 8 and 8

India's Beet Institute for IES, GATE & PSUs

Q.28 The minimized expression for the Boolean function

$$f(A, B, C, D) = \Sigma m (0, 2, 3, 4, 6, 8, 10, 11)$$

(a)
$$\overline{A}\overline{D} + \overline{B}D + \overline{B}C$$
 (b) $\overline{A}\overline{D} + B\overline{D} + B\overline{C}$

- (c) $\overline{A}\overline{D} + \overline{B}\overline{D} + BC$ (d) $\overline{A}\overline{D} + \overline{B}\overline{D} + \overline{B}C$
- **Q.29** The majority function is a Boolean function f(x, y, z), that takes the value 1 whenever a majority of variables x, y, z are 1. In the circuit diagram for the majority function shown below. The logic gates for the boxes labeled P and Q are, respectively

(a) AND, OR(b) OR, AND(c) EXOR, OR(d) EXOR, AND

Q.30 The circuit shown in figure below is,

Initially both flip-flops are at 00. After two clock pulses, the content at $Q_A Q_B$ is

(a) 00	(b) 01	
(c) 10	(d) 11	

© Copyright: **MADE EASY**