S.No.: 04 LS1_EE_T_230819

Digital Electronics

MADE ERSY

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST 2019-2020

ELECTRICAL ENGINEERING

Digital Electronics

Date of Test: 23/08/2019

				Answer Key		
1.	(d)	7.	(b)	13. (d)	19. (c)	25. (a)
2.	(b)	8.	(*)	14. (c)	20. (b)	26. (a)
3.	(c)	9.	(d)	15. (c)	21. (d)	27. (a)
4.	(a)	10.	(a)	16. (a)	22. (a)	28. (c)
5.	(d)	11.	(a)	17. (a)	23. (a)	29. (a)
6.	(b)	12.	(a)	18. (a)	24. (b)	30. (d)

DETAILED EXPLANATIONS

1. (d)

Given 12 bit content in excess 3 form

$$1000\ 1001\ 0111 = 897 - 333 = 564$$

3. (c)

Dual of Ex-OR is Ex-NOR. Also, complement of Ex-OR is Ex-NOR whihe is dual of Ex-OR.

4. (a)

CLK	State	Serial in
Χ	0011	0
1	0001	1
2	1000	

5. (d)

Output of stage 1 $X \oplus X = 0$ Output of 2nd stage 1 \oplus 0 = 1 Output Y = 1 \oplus 0 = 1

6. (b)

Minimum number of FF required,

$$2^n \ge \text{Mod no.}$$

$$2^n \ge 128$$

$$n = 7$$

$$\overline{(A \cdot \overline{B} + \overline{C})D + \overline{E}}$$

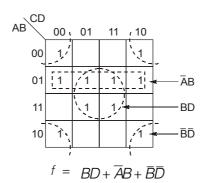
$$\overline{(A \cdot \overline{B} + \overline{C})D} \cdot E$$

$$(\overline{(A \cdot \overline{B} + \overline{C})} + \overline{D}) E$$

$$((\overline{A \cdot \overline{B}} \cdot C) + \overline{D})E$$

$$((\bar{A} + B) \cdot C + \bar{D})E$$

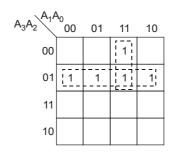
9. (d)


$$(1010) = 10_{10}$$
 gives 3 V

Step size =
$$\frac{3V}{10}$$
 = 0.3 V

Output voltage fof 0100 =
$$(=4_{10})$$
 is = $4 \times 0.3 = 1.2$ V

k map


:.

' = BD + AE

11. (a)

A_3	A_2	A_1	A_0	у
A ₃ 0 0 0 0 0 0 0 0 0 0	A ₂ 0 0 0 0	0	0	0
0	0	0 0 1	1	0 0 0 1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0 0 0	0 0 1	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	0 1 0	0 0 0 0 0
1	1	1	0	
1	1	1	1	0

k-map simiplification

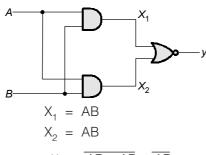
$$y = \overline{A}_3 A_2 + \overline{A}_3 A_1 A_0 = \overline{A}_3 (A_2 + A_1 A_0)$$

12. (a)

$$x = (M+N)(\overline{M}+P)(\overline{N}+\overline{P})$$

$$= (M\overline{M}+MP+N\overline{M}+NP)(\overline{N}+\overline{P})$$

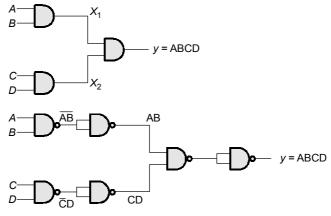
$$= (MP+N\overline{M}+NP)(\overline{N}+\overline{P})$$


$$= (MP+N\overline{M}+NP)(\overline{N}+\overline{P})$$

$$= MP\overline{N}+MP\overline{P}+N\overline{M}\overline{N}+N\overline{M}\overline{P}+NP\overline{N}+NP\overline{D}$$

$$x = MP\overline{N}+N\overline{M}\overline{P}$$

13. (d)



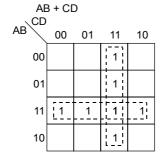
$$y = \overline{AB + AB} = \overline{AB}$$

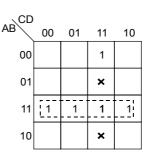
А	В	$y = \overline{AB}$	
0	0	1	
0	1	1	
1	0	1	
1	1	0	→ LED will be ON

14. (c)

Implementing y suing 2 input AND gates

: Hence total 6, 2 input NAND gates are required.

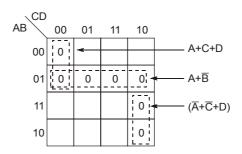

15. (c)


The expression of output is

$$r = \left(\overline{A} + B\right)\left(A + \overline{B}\right) = A\overline{A} + \overline{A}\overline{B} + AB + B\overline{B} = AB + \overline{A}\overline{B} = A \odot B$$

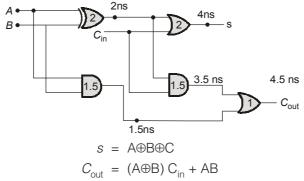
16. (a)

k-map



Comparing both the k-maps, it to clear that there are two don't care enteries. Which are (7, 11).

Drawing k-map for x.



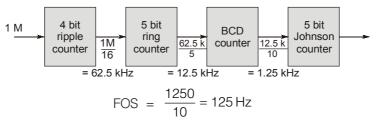
$$x = (A + C + D)(\overline{A} + \overline{C} + D)(A + \overline{B})$$

18. (a)

:.

Full adder implementation

From figure, it is clear that delay for sum and carry will be 4ns and 4.5ns respectively.


19. (c)

4 bit ripple ripple counter has $2^4 = 16$ states

5 bit ring counter has 5 states

BCD counter has 10 states

5 bit Jhonson counter has $5 \times 2 = 10$ states

21. (d)

Propagation delay

$$T_d = (n-1) t_{p \text{ carry}} + \max (t_{p \text{ carry}}, t_{p \text{ sum}})$$

= $(16-1) \times 5 + \max (5.6)$
= $75 + 6 = 81 \text{ ns}$

For given quadratic equation,

$$(x-3) = 0$$

and

$$(x-6) = 0$$
 will be two factors

:.

$$(x-3)(x-6) = x^2 - 11x + 22$$
 both are equal

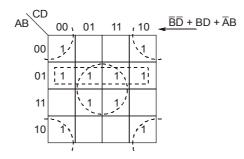
$$x^2 - (6 + 3)x + 6 \times 3 = x^2 - 11x + 22$$

Let b be the base of number

$$6 + 3 = 1b + 1$$

$$b = 8$$

Also,


$$6 \times 3 = 2b + 2$$

$$18 = 2b + 2$$

$$b = 8$$

23. (a)

k map

24. (b)

Let n number of flip flop cascaded each having propagation delay of t_{pd} . Frequency of operation

$$\frac{1}{nt_{nd}} \ge 10 \,\mathrm{MHz}$$

:.

$$n \le \frac{1}{t_{pd} \times 10 \text{ MHz}} \le \frac{1}{12 \times 10^{-9} \times 10^7} \le \frac{100}{12}$$

$$n = 8$$

For n = 8 MOD number of counter $2^8 = 256$

25. (a)

When odd number of NOT gate are arranged with output as a feedback to input it acts as an oscillator with frequency,

$$f = \frac{1}{2nt_{pd}}$$
 $n = \text{Number of NOT gates}$

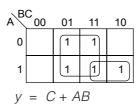
:.

$$f = \frac{1}{2 \times 5 \times t_{pd}}$$

··

$$t_{pd} = \frac{1}{10 \times f_{max}} = \frac{1}{10 \times 20} \,\mu \,\text{s} = \frac{1000}{10 \times 20} \,\mu \,\text{s} = 5 \,\text{ns}$$

: Each NOT gate has a propagation delay of 5 ns.


Expression of E.

$$E = \overline{A}O + A \cdot B = AB$$

$$y = \overline{E}C + E \cdot 1 = \overline{AB}C + AB$$

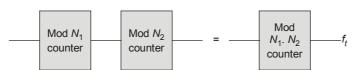
$$= (\overline{A} + \overline{B})C + AB = \overline{A}C + \overline{B}C + AB$$

k-map simplification

27. (a)

An eight bit binary ripple counter will be RESET i.e. initial condition 00000000 after

∴ i.e. after 129 clock pulses counter will be at (00)₁₀.


After additional (135 - 129) = 6 pulses counter will be at 0000 0110 state.

28. (c)

(i) n bit Johnson counter will have 2n states

 \therefore 3bit Johnson counter has mod number = $3 \times 2 = 6$

In 2nd stage, D -Fup flop acts as a T-flip flop and has mod no. 2

Hence given counter arrangement has $6 \times 2 = 12 \mod \text{number}$

29. (a)

Full scale voltage = Step size × Maximum count
= Step size ×
$$(2^n - 1)$$

= 10 mV × 255
= 2.55 V
% Resolution = $\frac{1}{2^n - 1}$ × 100 = $\frac{100}{255}$ = 0.392%

30. (d)

Number of function using n variables is 2^{2^n} .

Since, here n = 3, so number of function is 256.