SI.: 02-IGCE-I+J+K-31072023									
HYDROLOGY CIVIL ENGINEERING Date of Test : 31/07/2023									
AN	SWER K	(ey >							
1.	(c)	7.	(d)	13.	(a)	19.	(a)	25.	(b)
2.	(d)	8.	(b)	14.	(a)	20.	(c)	26.	(b)
3.	(c)	9.	(c)	15.	(d)	21.	(a)	27.	(b)
4.	(b)	10.	(c)	16.	(c)	22.	(c)	28.	(a)
5.	(c)	11.	(b)	17.	(a)	23.	(c)	29.	(c)
6.	(b)	12.	(a)	18.	(c)	24.	(c)	30.	(d)

7

DETAILED EXPLANATIONS

1. (c)

Double mass curve technique is used to check the consistency of rainfall data.

2. (d)

Rainfall,
$$P_1 = 6 \text{ cm}$$

Runoff, $R_1 = 3 \text{ cm}$
 ϕ -index, $\phi_1 = \frac{6-3}{6} = \frac{1}{2} \text{ cm/hr}$

since,

.:.

...

$$\phi_1 = \phi_2$$

$$\frac{1}{2} = \frac{12 - R_2}{9}$$

$$R_2 = 7.5 \text{ cm}$$

3. (c)

S.No.	Soil type	Infiltration Capacity (mm/h)	Remarks
1.	Highly Clayey soils	1.25	Very Low
2.	Clayey soils	2.5 to 25	Low
3.	Sandy loam	12.5 to 25	Medium
4.	Deep sands	> 25	High

4. (b)

Equilibrium discharge,
$$Q_e = 2.778 \times \frac{300}{3} = 277.8 \text{ m}^3/\text{s}$$

7. (d)

Risk
$$\overline{R} = 1 - \left(1 - \frac{1}{T}\right)^n$$

Here,
 $n = 25$ years
 $T = 100$ years
 \therefore
 $\overline{R} = 1 - \left(1 - \frac{1}{100}\right)^{25} = 1 - \left(\frac{99}{100}\right)^{25}$.

8. (b)

...

Station *B* is inoperative

 $N_B = 180 \text{ cm}$ $1.1N_B = 198 \text{ cm}$ $0.9N_B = 162 \text{ cm}$ $N_A = 175 \text{ cm} N_C = 165 \text{ cm}$ Since, N_{A} and N_{C} are within 10% of N_{B} $P_B = \frac{P_A + P_C}{2} = \frac{150 + 135}{2} = 142.5 \,\mathrm{cm}$ *.*:.

© Copyright: MADE EASY

IS 4987: 1968 recommendation are In plains: 1 station per 520 km²

For 1040 km², no of stations required =
$$\frac{1040}{520}$$
 = 2.

11. (b)

Total rainfall, P = 1.5 + 2.5 + 3.0 + 6.5 + 7.0 + 7.5 + 8.5 + 8.0 + 7.0 + 6.5 + 2.5 + 2.0 = 62.5 cmTotal runoff, Q = 20.5 cm $t_r = 12 \text{ hr}$ $W_{\text{index}} = \frac{P-Q}{t_r} = \frac{62.5 - 20.5}{12} = 3.5 \text{ cm/hr}$

÷

:..

For ϕ -index, the values lesser than 3.5 cm/hr are neglected i.e. 1.5, 2.5, 3, 2.5, 2.0 are neglected.

$$P = 6.5 + 7.0 + 7.5 + 8.5 + 8.0 + 7.0 + 6.5 = 51$$

$$Q = 20.5 \text{ cm}$$

$$t_r = 12 - 5 = 7 \text{ hr}$$

$$\phi_{\text{index}} = \frac{P - Q}{t_r} = \frac{51 - 20.5}{7} = 4.357 \text{ cm/hr} \simeq 4.36 \text{ cm/hr}$$

:.

12. (a)

Month	Temp.(F)	Percent sunshine $hr(P_h)$	$\Sigma P_h T_f$
Nov	60	2	120
Dec	55	8	440
Jan	50	7	350
Feb	60	6	360
			$\Sigma P_h T_f = 1270$

PET =
$$\frac{2.54 \text{ K} \Sigma P_h T_F}{100} = \frac{2.54 \times 0.6 \times 1270}{100}$$

PET = 19.35 cm

13. (a)

...

For the second 30 minutes,

$$t_{1} = 30 \text{ mins} = 0.5 \text{ hr}$$

$$t_{2} = 60 \text{ mins} = 1 \text{hr}$$
Total infiltration,
$$F_{p} = \int_{0.5}^{1} (4 + e^{-2t}) dt = \int_{0.5}^{1} 4 dt + \int_{0.5}^{1} e^{-2t} dt$$

$$= [4t]_{0.5}^{1} + \left[-\frac{e^{-2t}}{2} \right]_{0.5}^{1} = 4 \times (1 - 0.5) + \frac{1}{2} \left[e^{-2 \times 0.5} - e^{-2 \times 1} \right]_{0.5}^{1}$$

$$= 2 + \frac{1}{2} \left[e^{-1} - e^{-2} \right]$$

= $2 + \frac{1}{2} \left[\frac{1}{e} - \frac{1}{e^2} \right] = 2 + \frac{1}{2} \times 0.232 = 2 + 0.116 = 2.116 \text{ cm}$

14. (a)

$$\frac{U_c}{U_m} = \frac{1 \text{ cm}}{1 \text{ mm}}$$

$$\Rightarrow \qquad \frac{U_c}{U_m} = \frac{1}{0.1}$$

$$\Rightarrow \qquad U_c = 10 U_m$$

$$\therefore \qquad U_m = -\frac{U_c}{10}$$

15. (d)

Distribution graph is basically a D-hr unit hydrograph with ordinate showing the percentage of surface runoff occurring in successive period of equal time intervals of D-hr.

16. (c)

Isohyet Interval	Average Isohyet Rainfall (mm)	Area between Isohyets (km ²)	PA
115 - 105	110	120	13200
105 - 95	100	150	15000
95 - 85	90	200	18000
85 - 75	80	250	20000
		$\Sigma A = 720$	$\Sigma PA = 66200$

Average rainfall,

$$P_{avg} = \frac{\Sigma PA}{\Sigma A} = \frac{66200}{720} = 91.94 \text{ mm}$$
Volume of runoff = $0.7 \times 720 \times 10^6 \times 91.94 \times 10^{-3} = 46.34 \times 10^6 \text{ m}^3 = 46.34 \text{ Mm}^3$
Volume of losses = $(1 - 0.7) \times 720 \times 10^6 \times 91.94 \times 10^{-3}$
= $19.86 \times 10^6 \text{ m}^3 = 19.86 \text{ Mm}^3$

: Volume of runoff – Volume of losses = $46.34 - 19.86 = 26.48 \text{ Mm}^3$

17. (a)

In hydrologic routing, discharge is taken as a function of time.

19. (a)

As we know,

$$\frac{(Q)_{\text{unsteady}}}{(Q)_{\text{steady}}} = \sqrt{1 + \frac{dh/dt}{V_w \cdot S_o}}$$
$$(Q)_{\text{unsteady}} = 160 \times \sqrt{1 + \frac{11.2 \text{ cm/hr}}{2.0 \text{ m/s} \times 100 \times 3600 \times \frac{1}{3600}}} = 164.42 \text{ m}^3/\text{s}$$

 \Rightarrow

Rainfall excess in 1st three hours, $R_1 = 0.5 \times 3 = 1.5$ cm Rainfall excess in 2nd three hours, $R_2 = 1 \times 3 = 3$ cm

(1)	Ordinate of	DRH due to	DRH due	Ordinate of	Base flow	Ordinates of flood
t(nr)	3hr UH	1.5 cm ER	to 3 cm ER	final DRH	(m^3/s)	hydrograph (m ³ /s)
0	0	0×1.5		0	7	7
3	10	10× 1.5	0 × 3	15	7	22
6	15	15 × 1.5	10 × 3	52.5	7	59.5
9	30	30 × 1.5	15 × 3	90	7	97
12	18	18 × 1.5	30 × 3	117	7	124
15	6	6 × 1.5	18 × 3	63	7	70
18	0	0 × 1.5	6 × 3	18	7	25
21			0 × 3	0	7	7

At t = 12 hr, ordinate of flood hydrograph is $124 \text{ m}^3/\text{s}$

21. (a)

Data normally required in the studies are

- (i) Weather records in term of temperature, humidity and wind velocity
- (ii) Precipitation data
- (iii) Stream flow records
- (iv) Evaporation and evapotranspiration data
- (v) Infiltration characteristics of the study area
- (vi) Soils of the area
- (vii) Land use and land cover
- (viii) Ground water characteristics
- (ix) Physical and geological characteristics of the area
- (x) Water quality data

22. (c)

Unit hydrograph \Rightarrow *R* = 1 cm = 0.01 m

$$\frac{1}{2} \times T_B \times 100 \times 3600 = 90 \times 10^6 \times 0.01$$
$$T_B = 50 \text{ hours}$$

23. (c)

In Western Ghat, Maharashtra, the flood peak will be given by Inglis formula, which is

$$Q_p = \frac{124A}{\sqrt{A+10.4}}$$
 where A (in km²), Q_p (in m³/s)
$$Q_p = \frac{124 \times 53.6}{\sqrt{53.6+10.4}} = \frac{124 \times 53.6}{8} = 830.8 \text{ m}^3/\text{s}$$

$$\Rightarrow$$

$$\mu = P_{ac} = \frac{800 + 520 + 440 + 420}{4} = 545 \text{ mm}$$

$$\sigma_{n-1} = \sqrt{\frac{5(P_i - P_{ac})^2}{n-1}}$$

$$\Rightarrow \qquad \sigma_{n-1} = \sqrt{\frac{(800 - 545)^2 + (520 - 545)^2 + (440 - 545)^2 + (420 - 545)^2}{4-1}}$$

$$\Rightarrow \qquad \sigma_{n-1} = 175.404 \text{ mm}$$

$$\therefore \qquad c_v = \frac{\sigma_{n-1}}{\mu} \times 100 = \frac{175.404}{545} \times 100 = 32.18\%$$
Now, No. of rainguages, $N = \left(\frac{c_v}{\varepsilon}\right)^2 = \left(\frac{32.18}{6}\right)^2 = 28.77$
i.e. $N = 29$

$$\therefore \text{ Additional raingauge stations required = 29 - 4 = 25$$
25. (b)
Total rainfall volume = 0.015 × 8 × 1.5 × 10⁶
= 180,000 m³
Total infiltration volume = Total rainfall - Runoff
= 180,000 m³

$$\therefore \qquad \text{Infiltration depth} = \frac{145000}{1.5 \times 10^6} = 0.0967 \text{ m} = 9.67 \text{ cm}$$
26. (b)
 $P = \text{Input due to precipitation in 10 hours}$

$$= 200 \times 100 \times 100 \times \frac{9}{100} = 180000 \text{ m}^3$$
Water not available to runoff = 180000 - 86400 = 93600 \text{ m}^3
Water not available to runoff = 180000 - 86400 = 93600 \text{ m}^3
$$X = \text{Runoff} = 2 \times 12 \times 3600 = 86400 \text{ m}^3$$
Water not available to runoff = 180000 - 86400 = 93600 \text{ m}^3
$$Also, \qquad \frac{P_u}{v_z} = \left(\frac{9}{2}\right)^{1/7} = 1.24$$

Also,

:.

 $v_9 = 1.24 \times 12 = 14.88$ kmph

So, daily evaporation,

$$E = k_m (e_s - e_a) \left(1 + \frac{v_9}{16} \right)$$

$$= 0.36 (34 - 17) \left(1 + \frac{14.88}{16} \right) = 11.81 \text{ mm/day}$$

For the 1st hour rainfall, P = 45 mm

Effective rainfall =
$$\frac{12 \times (0) + 7(45 - 30) + 1(0)}{20} = 5.25 \text{ mm}$$

For the second hour rainfall, P = 55 mm

Effective rainfall =
$$\frac{12(55-50)+7(55-30)+1(0)}{20} = 11.75 \text{ mm}$$

$$\therefore$$
 Total effective rainfall = 5.25 + 11.75 = 17 mm

30. (d)

Basin diameter,

D = 15 km

Side of square around station $A = \frac{15}{2} = 7.5 \text{ km}$

Area of station $A = 7.5 \times 7.5 = 56.25 \text{ km}^2$

Total area of circular basin = $\frac{\pi}{4}(15)^2 = 176.7 \text{ km}^2$

Area of station B = Area of station C = Area of station D = Area of station E

$$= \left(\frac{176.7 - 56.25}{4}\right) = 30.11 \text{ km}^2$$

Mean rainfall =
$$\frac{9 \times 56.25 + 30.11(7 + 10 + 11 + 8)}{176.7}$$

= 8.99 \approx 9 cm

...