Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
DIGITAL LOGIC COMPUTER SCIENCE & IT									
Date of Test: 20/07/2023									
ANSWER KEY >									
1. (b) 7. (a) 13. (d) 19. (c) 2	5. (b)								
2. (c) 8. (b) 14. (c) 20. (b) 2	86. (c)								
3. (a) 9. (c) 15. (b) 21. (b) 2	27. (d)								
4. (c) 10. (c) 16. (a) 22. (b) 2	8. (d)								
5. (b) 11. (b) 17. (a) 23. (b) 2	.9. (a)								
6. (d) 12. (c) 18. (c) 24. (b) 3	0. (a)								

DETAILED EXPLANATIONS

1. (b)

Converting into decimal,

$$\begin{array}{rcl} (2)_3 &=& 2\times 3^\circ = 2\\ (3)_4 &=& 3\times 4^\circ = 3\\ (14)_5 &=& 1\times 5^1 + 4\times 5^\circ = 9\\ (15)_6 &=& 1\times 6^1 + 5\times 6^\circ = 11 \end{array}$$

2. (c)

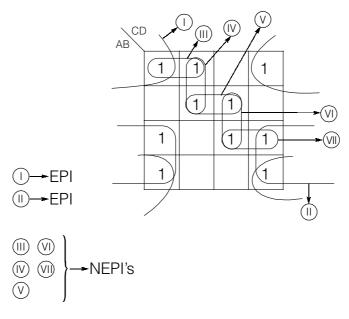
The characteristics tabel with J, K, Q_n , Q_{n+1} and the excitation table for S and R is shown below –

J	к	Q _n	Q _{<i>n</i>+1}	S	R
0	0	0	0	0	×
0	0	1	1	×	0
0	1	0	0	0	×
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	×	0
1	1	0	1	1	0
1	1	1	0	0	1

The K-map for S and R is shown as – For S,

 $S(J, K, Q_n) = \Sigma m(4, 6) + d(1, 5) = J\overline{Q}_n$

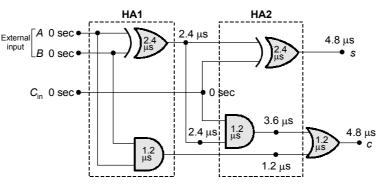
KQ,	KQ _n							
J	00	01	11	10				
0		×						
1	1	×		1				


 $R(J, K, Q_n) = \Sigma m(3, 7) + d(0, 2) = KQ_n$

K	, KQ _n							
<u>,</u>	00	01	11	10				
0	×		1	×				
1			1					

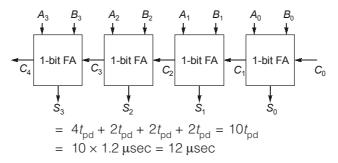
$$R = KQ_n$$

 $S = J\overline{Q}_n$


3. (a)

EPI = Essential Prime Implicant [which cover a minterm not covered by any other prime implicants] NEPI = Non Essential Prime Implicant. Number of EPI's = 2, number of NEPI's = 5.

4. (c)


For one full Adder :

The propagation delay of AND / OR gate $t_{\rm pd}$ = 1.2 μ sec.

The propagation delay of EX-OR gate $2t_{pd} = 2.4 \,\mu$ sec.

- Binary Adder external inputs are available to all HA1's simultaneously.
- First HA1 output of all full adders are available simultaneously with delay of 2.4 μsec (i.e., 2t_{pd}).
- Carry generate from previous Full adder is passing only through HA2 of next full adder.
- The delay of LSB full adder = $4t_{pd}$.
- The 4 bit ripple carry binary delay:

5. (b)

For MOD - 10 counter -

X +

$$X =$$
 Jhonson counter required = 5 FF's

$$Z = ripple counter required = 4 FF's$$

$$Y + Z = 5 + 10 + 4$$

= 19 FF' s.

Clk Q1		$Q_1 \qquad Q_0$	F	F1	FF0			
Cik	Q ₁	Q 0	$J_1 = Q_0$	$K_1 = \overline{Q}_0$	$J_0 = \overline{Q}_1$	$K_0 = Q_1$		
	0	0	0	1	1	0		
1	0	1	1	0	1	0		
2 3	1	1	1	0	0	1		
3	1	0	0	1	0	1		
4	0	0						
$\rightarrow 0 \rightarrow 1 \rightarrow 3 \rightarrow 2$								
N = 4								
K = 334								
$K \% N = 2 = (11)_2$								

7. (a)

Prime implicants are:

Cells(0, 2, 8, 10) : This is an EPI because it covers minterm 2 uniquely. Cells(0, 1, 8, 9) : This is an EPI because it covers minterm 1 uniquely. Cells (10, 14) : This is an EPI because it covers minterm 14 uniquely. So, 3 PI, 3 EPI. So, PI + EPI = 3 + 3 = 6

8. (b)

M = 1000 1111; N = 0110 0010; O = 0100 1001; P = 0111 0010 Now, program execution begins:

- 1. $M \leftarrow M \oplus N :: //M = 1110 \ 1101$
- 2. $M \leftarrow CSL M :: //M = 1101 1011$
- 3. $N \leftarrow M + N :: //N = 0011 1101$
- 4. $O \leftarrow O \land N :: //O = 0000 \ 1001$
- 4. $O \leftarrow O \times N ... //O = 0000 1001$ 5. $O \leftarrow CSR O :: //O = 1000 0100$
- 5. $0 \leftarrow CSRO ... //O = 1000010$
- 6. P ← P + 1 :: //P = 0111 0011
- 7. $P \leftarrow P + O :: //P = 1111 0111$

Hence, answer is option (b).

9. (c)

$$Y = \overline{ABC + \overline{A}\overline{B}} + BC$$

Dual of Y

$$Y_{d} = \overline{(A+B+C)\cdot(\overline{A}+\overline{B})}\cdot(B+C) = \left[\overline{(A+B+C)}+\overline{(\overline{A}+\overline{B})}\right]\cdot(B+C)$$

Compliment of Y

$$Y_{c} = \overline{(\overline{ABC} + \overline{A}\overline{B}) + BC} = (\overline{\overline{ABC} + \overline{A}\overline{B}}) \cdot \overline{BC}$$
$$= (ABC + \overline{A}\overline{B}) \cdot \overline{BC}$$

India's Best Institute for IES, GATE & PSUs

10. (c)

Output of the 4 : 1 MUX circuit in Figure \boldsymbol{A} is

$$Y = I_0 \overline{A}\overline{B} + I_1 \overline{A}B + I_2 \overline{A}\overline{B} + I_3 \overline{A}B$$

Output of the circuit in Figure **B** is

 $Y = A \oplus B \oplus C = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$

On comparison

$$I_0 = C$$

$$I_1 = \overline{C}$$

$$I_2 = \overline{C}$$

$$I_3 = C$$

11. (b)

$$Y_{1} = \overline{c}$$

$$F = Y_{2} = \overline{d}Y_{1} + dc$$

$$= \overline{d}\overline{c} + dc$$

$$= c \odot d$$

12. (c)

 Q_{n+1} A B JΚ 0 0 1 0 1 0 1 1 1 \overline{Q}_n 1 0 1 0 1 1 1 0 1 0 $Q_{n+1} = \overline{A}\overline{B} + A\overline{B} + \overline{A}B\overline{Q}_n$ $Q_{n+1} = \overline{B} + \overline{A}B\overline{Q}_n$ $= \overline{B} + \overline{A}\overline{Q}_n$

13. (d)

14. (c) Number of flip-flops for mod-16 ripple counter = 4

Maximum clock frequency =
$$\frac{10^9}{4\rho}$$
Hz = 5 MHz

$$p = \frac{10^9}{4 \times 5 \times 10^6} = \frac{1000}{20}$$

$$p = 50$$

15. (b)

Let the base be x, then

$$292_{10} = 1204 x$$

= 1 × x³ + 2 × x² + 0 × x¹ + 4 × x⁰
= 292_{10}
= x³ + 2x² + 4
= 6 (By substitution)

16. (a)

For the given 4×1 MUX, 'A' and 'B' are select lines and 'C' be the input

So,

$$I_{0} = I_{1} = I_{2} = I_{3}$$

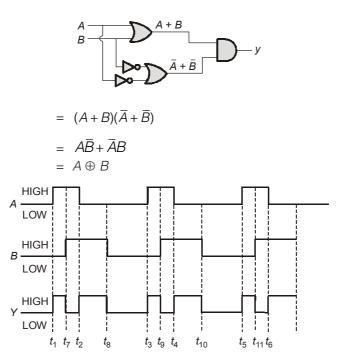
$$\overline{C} \bigcirc 2 = 4 = 6$$

$$C \bigcirc 1 = 3 = 5 = 5$$

$$I_{0} = 1 = a$$

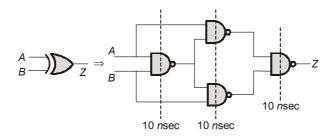
$$I_{1} = 0 = b$$

$$I_{2} = 1 = c$$

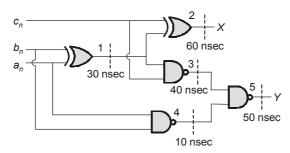

$$I_{3} = 0 = d$$
So,

$$a \oplus d = b \oplus c = 1$$
So output of NAND gate is 0 i.e. MUX 'E' connected to '0'

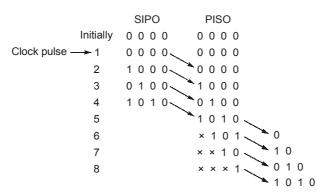
So, output of NAND gate is 0 i.e. MUX 'E' connected to '0'.


The MUX is in disable state. MUX is having active high enable, but E = 0, so that MUX is in disable state. Hence MUX output Z is equal to '0'.

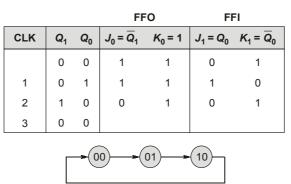
17. (a)



An Ex-OR gate can be represented as

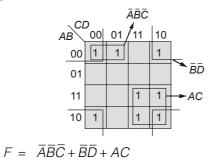


So, for EX-OR gate, it will take 30 nsec to get the output.


So, to get the output Y, it will take 50 nsec.

19. (c)

So, after 8 pulses, the output from PISO will be same as input in SIPO.


20. (b)

N = 3

21. (b)

The k-map has to rearranged as

22. (b)

Simplifying boolean expression:

$$F = C(B + C) (A + B + C)$$

= (CB + CC) (A + B + C)
= (CB + C) (A + B + C)
= C(1 + B) (A + B + C)
= C(A + B + C)
= AC + BC + C
= C(1 + A + B)
= C

23. (b)

Let the base be x, then

 $292_{10} = 1204 x$ = 1 × x³ + 2 × x² + 0 × x¹ + 4 × x⁰ = 292_{10} = x³ + 2x² + 4 = 6 (By substitution)

24. (b)

Gray codes are less error-prone for mechanical devices that involve making and breaking electrical circuits because they only change in one bit position at a time. So, they are considered as the minimum error code.

25. (b)

$$Y = \bar{S}_{1}\bar{S}_{0}I_{0} + \bar{S}_{1}S_{0}I_{1} + S_{1}\bar{S}_{0}I_{2} + S_{1}S_{0}I_{3}$$
$$I_{0} = I_{3} = S_{1} \text{ and } I_{1} = I_{2} = S_{0}$$
$$Y = \bar{S}_{1}\bar{S}_{0}S_{1} + \bar{S}_{1}S_{0}S_{0} + S_{1}\bar{S}_{0}S_{0} + S_{1}S_{0}S_{1}$$

So,

$$= \bar{S}_1 S_0 + S_1 S_0 = S_0$$

So, whenever $S_0 = B$, output (Y) = BSo, option (b) is correct.

26. (c)

All the statements are correct.

27. (d)

- S_1 is incorrect, as mentioned in question would required five 4X1 MUX instead of three.
- S_2 is incorrect, as it is not always the case. For example, the function $f(x, y, z) = \Sigma_m(2, 4, 5, 6)$ can have different PI when group differently in K-map.

28. (d)

Let $x = y \odot z$

So, $x \odot y \odot z$

$$\frac{y \odot Z}{P} \odot \frac{y \odot Z}{P}$$

and $P \odot P = 1$. So option (d) is correct.

India's Baset Institute for IEE CATE C CONT

29. (a)

Truth table for BCD to excess-3 code output:

Decimal	Input				Output			Decimal	
Value	Р	Q	R	S	Р	Q	R	S	Value
0	0	0	0	0	0	0	1	1	3
1	0	0	0	1	0	1	0	0	4
2	0	0	1	0	0	1	0	1	5
3	0	0	1	1	0	1	1	0	6
4	0	1	0	0	0	1	1	1	7
5	0	1	0	1	1	0	0	0	8
6	0	1	1	0	1	0	0	1	9
7	0	1	1	1	1	0	1	0	10
8	1	0	0	0	1	0	1	1	11
9	1	0	0	1	1	1	0	0	12

K-map for P: $f(P, Q, R, S) = \Sigma m(5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)$

30. (a)

In the given digital circuit each multiplexer is working as a NOT gate thus it is a ring oscillator with five NOT gates.

The frequency of oscillation will be $f = \frac{1}{2Nt_{pd}}$. N = number of NOT gates in cascade t_{pd} = propagation delay of each NOT gate. $f = \frac{1}{2 \times 5 \times 25 ns} = 4 \times 10^6 \text{ Hz} = 4 \text{ MHz}.$ *.*..