

DETAILED EXPLANATIONS

1. (b)

Converting into decimal,

$$
\begin{aligned}
(2)_{3} & =2 \times 3^{\circ}=2 \\
(3)_{4} & =3 \times 4^{\circ}=3 \\
(14)_{5} & =1 \times 5^{1}+4 \times 5^{\circ}=9 \\
(15)_{6} & =1 \times 6^{1}+5 \times 6^{\circ}=11
\end{aligned}
$$

2. (c)

The characteristics tabel with J, K, Q_{n}, Q_{n+1} and the excitation table for S and R is shown below -

\boldsymbol{J}	\boldsymbol{K}	$\boldsymbol{Q}_{\boldsymbol{n}}$	$\boldsymbol{Q}_{\boldsymbol{n}+\boldsymbol{1}}$	\boldsymbol{S}	\boldsymbol{R}
0	0	0	0	0	\times
0	0	1	1	\times	0
0	1	0	0	0	\times
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	\times	0
1	1	0	1	1	0
1	1	1	0	0	1

The K-map for S and R is shown as -
For S,

$$
S\left(J, K, Q_{n}\right)=\Sigma m(4,6)+d(1,5)=J \bar{Q}_{n}
$$

$K Q_{n}$				
\mathcal{J}_{n}	00	01	11	10
0		0	\times	

$$
S=J \bar{Q}_{n}
$$

For R,

$$
R\left(J, K, Q_{n}\right)=\Sigma m(3,7)+d(0,2)=K Q_{n}
$$

$\begin{gathered} K Q_{n} \\ \lambda \quad 00 \end{gathered}$		01	11	10
0	\times		1	\times
1			1	

$$
R=K Q_{n}
$$

3. (a)

$\left.\begin{array}{l}\text { (III) (VI) } \\ \text { (IV) (VII) } \\ \text { (V) }\end{array}\right\} \rightarrow$ NEPI's

EPI = Essential Prime Implicant [which cover a minterm not covered by any other prime implicants] NEPI $=$ Non Essential Prime Implicant. Number of EPI's $=2$, number of NEPI's $=5$.
4. (c)

For one full Adder :

The propagation delay of AND / OR gate $t_{\mathrm{pd}}=1.2 \mu \mathrm{sec}$.
The propagation delay of EX-OR gate $2 t_{\mathrm{pd}}=2.4 \mu \mathrm{sec}$.

- Binary Adder external inputs are available to all HA1's simultaneously.
- First HA1 output of all full adders are available simultaneously with delay of $2.4 \mu \mathrm{sec}\left(\mathrm{i} . \mathrm{e} ., 2 t_{\mathrm{pd}}\right.$).
- Carry generate from previous Full adder is passing only through HA2 of next full adder.
- The delay of LSB full adder $=4 t_{\text {pd }}$.
- The 4 bit ripple carry binary delay:

5. (b)

For MOD - 10 counter -

$$
\begin{aligned}
X & =\text { Jhonson counter required }=5 \mathrm{FF}^{\prime} \mathrm{s} \\
Y & =\text { ring counter required }=10 \mathrm{FF}^{\prime} \mathrm{s} \\
Z & =\text { ripple counter required }=4 \mathrm{FF}^{\prime} \mathrm{s} \\
X+Y+Z & =5+10+4 \\
& =19 \mathrm{FF}^{\prime} \mathrm{s} .
\end{aligned}
$$

6. (d)

Clk	Q_{1}	Q_{0}	FF1		FF0	
			$J_{1}=Q_{0}$	$K_{1}=\bar{Q}_{0}$	$J_{0}=\bar{Q}_{1}$	$K_{0}=Q_{1}$
	0	0	0	1	1	0
1	0	1	1	0	1	0
2	1	1	1	0	0	1
3	1	0	0	1	0	1
4	0	0				

$N=4$
$K=334$
$K \% N=2=(11)_{2}$
7. (a)

Prime implicants are:
Cells($0,2,8,10$) : This is an EPI because it covers minterm 2 uniquely.
Cells $(0,1,8,9)$: This is an EPI because it covers minterm 1 uniquely.
Cells $(10,14)$: This is an EPI because it covers minterm 14 uniquely.
So, 3 PI, 3 EPI.
So, $\quad P I+E P I=3+3=6$
8. (b)
$M=1000$ 1111; $N=01100010 ; O=01001001 ; P=01110010$
Now, program execution begins:

1. $\mathrm{M} \leftarrow M \oplus N:: / / M=11101101$
2. $M \leftarrow C S L M:: / / M=11011011$
3. $\mathrm{N} \leftarrow \mathrm{M}+\mathrm{N}:: / / \mathrm{N}=00111101$
4. $O \leftarrow O \wedge N:: / / O=00001001$
5. $\mathrm{O} \leftarrow \mathrm{CSR} \mathrm{O}:: / / \mathrm{O}=10000100$
6. $P \leftarrow P+1:: / / P=01110011$
7. $P \leftarrow P+O:: / / P=11110111$

Hence, answer is option (b).
9. (c)

$$
Y=\overline{A B C+\bar{A} \bar{B}}+B C
$$

Dual of Y

$$
Y_{d}=\overline{(A+B+C) \cdot(\bar{A}+\bar{B})} \cdot(B+C)=[\overline{(A+B+C)}+\overline{(\bar{A}+\bar{B})}] \cdot(B+C)
$$

Compliment of Y

$$
\begin{aligned}
Y_{c} & =\overline{(\overline{A B C+\bar{A} \bar{B}})+B C}=(\overline{\overline{A B C+\bar{A} \bar{B}}}) \cdot \overline{B C} \\
& =(A B C+\bar{A} \bar{B}) \cdot \overline{B C}
\end{aligned}
$$

10. (c)

Output of the 4 : 1 MUX circuit in Figure \mathbf{A} is

$$
Y=I_{0} \bar{A} \bar{B}+I_{1} \bar{A} B+I_{2} A \bar{B}+I_{3} A B
$$

Output of the circuit in Figure \mathbf{B} is

$$
Y=A \oplus B \oplus C=\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B C
$$

On comparison

$$
\begin{aligned}
& I_{0}=C \\
& I_{1}=\bar{C} \\
& I_{2}=\bar{C} \\
& I_{3}=C
\end{aligned}
$$

11. (b)

$$
\begin{aligned}
Y_{1} & =\bar{c} \\
F & =Y_{2}=\bar{d} Y_{1}+d c \\
& =\bar{d} \bar{c}+d c \\
& =c \odot d
\end{aligned}
$$

12. (c)

A	B	J	K	Q_{n+1}
0	0	1	0	1
0	1	1	1	\bar{Q}_{n}
1	0	1	0	1
1	1	0	1	0

$$
\begin{aligned}
Q_{n+1} & =\bar{A} \bar{B}+A \bar{B}+\bar{A} B \bar{Q}_{n} \\
Q_{n+1} & =\bar{B}+\bar{A} B \bar{Q}_{n} \\
& =\bar{B}+\bar{A} \bar{Q}_{n}
\end{aligned}
$$

13. (d)
14. (c)

Number of flip-flops for mod-16 ripple counter $=4$
Maximum clock frequency $=\frac{10^{9}}{4 p} \mathrm{~Hz}=5 \mathrm{MHz}$

$$
\begin{aligned}
& p=\frac{10^{9}}{4 \times 5 \times 10^{6}}=\frac{1000}{20} \\
& p=50
\end{aligned}
$$

15. (b)

Let the base be x, then

$$
\begin{aligned}
292_{10} & =1204 x \\
& =1 \times x^{3}+2 \times x^{2}+0 \times x^{1}+4 \times x^{0} \\
& =292_{10} \\
& =x^{3}+2 x^{2}+4 \\
& =6 \text { (By substitution) }
\end{aligned}
$$

16. (a)

For the given $4 \times 1 \mathrm{MUX}$, ' A ' and ' B ' are select lines and ' C ' be the input

I_{0}		I_{1}	I_{2}	I_{3}
\bar{C}	(0)	2	(4)	6
c	(1)	3	(5)	7
	1	0	1	0

So,

$$
\begin{aligned}
& I_{0}=1=a \\
& I_{1}=0=b \\
& I_{2}=1=c \\
& I_{3}=0=d
\end{aligned}
$$

So,

$$
a \oplus d=b \oplus c=1
$$

So, output of NAND gate is 0 i.e. MUX ' E ' connected to ' 0 '.
The MUX is in disable state. MUX is having active high enable, but $E=0$, so that MUX is in disable state. Hence MUX output Z is equal to ' 0 '.
17. (a)

$$
\begin{aligned}
& =(A+B)(\bar{A}+\bar{B}) \\
& =A \bar{B}+\bar{A} B \\
& =A \oplus B
\end{aligned}
$$

18. (c)

An Ex-OR gate can be represented as

So, for EX-OR gate, it will take 30 nsec to get the output.

So, to get the output Y, it will take 50 nsec.
19. (c)

So, after 8 pulses, the output from PISO will be same as input in SIPO.
20. (b)

	FFO				FFI	
CLK	\boldsymbol{Q}_{1}	$\boldsymbol{Q}_{\mathbf{0}}$	$J_{0}=\bar{Q}_{1}$	$\boldsymbol{K}_{\mathbf{0}}=\mathbf{1}$	$\boldsymbol{J}_{\mathbf{1}}=\boldsymbol{Q}_{\mathbf{0}}$	$\boldsymbol{K}_{\mathbf{1}}=\overline{\boldsymbol{Q}}_{\mathbf{0}}$
	0	0	1	1	0	1
1	0	1	1	1	1	0
2	1	0	0	1	0	1
3	0	0				

21. (b)

The k-map has to rearranged as

$$
F=\bar{A} \bar{B} \bar{C}+\bar{B} \bar{D}+A C
$$

22. (b)

Simplifying boolean expression:

$$
\begin{aligned}
F & =C(B+C)(A+B+C) \\
& =(C B+C C)(A+B+C) \\
& =(C B+C)(A+B+C) \\
& =C(1+B)(A+B+C) \\
& =C(A+B+C) \\
& =A C+B C+C \\
& =C(1+A+B) \\
& =C
\end{aligned}
$$

23. (b)

Let the base be x, then

$$
\begin{aligned}
292_{10} & =1204 x \\
& =1 \times x^{3}+2 \times x^{2}+0 \times x^{1}+4 \times x^{0} \\
& =292_{10} \\
& =x^{3}+2 x^{2}+4 \\
& =6 \text { (By substitution) }
\end{aligned}
$$

24. (b)

Gray codes are less error-prone for mechanical devices that involve making and breaking electrical circuits because they only change in one bit position at a time.
So, they are considered as the minimum error code.
25. (b)

$$
\begin{aligned}
& Y=\bar{S}_{1} \bar{S}_{0} I_{0}+\bar{S}_{1} S_{0} I_{1}+S_{1} \bar{S}_{0} I_{2}+S_{1} S_{0} I_{3} \\
& I_{0}=I_{3}=S_{1} \text { and } I_{1}=I_{2}=S_{0}
\end{aligned}
$$

So,

$$
\begin{aligned}
Y & =\bar{S}_{1} \bar{S}_{0} S_{1}+\bar{S}_{1} S_{0} S_{0}+S_{1} \bar{S}_{0} S_{0}+S_{1} S_{0} S_{1} \\
& =\bar{S}_{1} S_{0}+S_{1} S_{0}=S_{0}
\end{aligned}
$$

So, whenever $S_{0}=B$, output $(Y)=B$
So, option (b) is correct.
26. (c)

All the statements are correct.
27. (d)

- $\quad S_{1}$ is incorrect, as mentioned in question would required five 4X1 MUX instead of three.
- S_{2} is incorrect, as it is not always the case. For example, the function $f(x, y, z)=\Sigma_{m}(2,4,5,6)$ can have different PI when group differently in K-map.

28. (d)

Let $\quad x=y \odot z$
So, $\quad x \odot y \odot z$

$$
\frac{y \odot z}{P} \odot \frac{y \odot z}{P}
$$

and $P \odot P=1$. So option (d) is correct.
29. (a)

Truth table for BCD to excess-3 code output:

Decimal Value	Input					Output			
	P	Q	R	S	P	Q	R	S	Value
0	0	0	0	0	0	0	1	1	3
1	0	0	0	1	0	1	0	0	4
2	0	0	1	0	0	1	0	1	5
3	0	0	1	1	0	1	1	0	6
4	0	1	0	0	0	1	1	1	7
5	0	1	0	1	1	0	0	0	8
6	0	1	1	0	1	0	0	1	9
7	0	1	1	1	1	0	1	0	10
8	1	0	0	0	1	0	1	1	11
9	1	0	0	1	1	1	0	0	12

K-map for $P: f(P, Q, R, S)=\Sigma m(5,6,7,8,9)+d(10,11,12,13,14,15)$

 RS				
00				
01		1	1	1
11	X	X	X	X
10	1	1	X	X

$$
=P+Q S+Q R
$$

$$
=P+Q(S+R)
$$

30. (a)

In the given digital circuit each multiplexer is working as a NOT gate thus it is a ring oscillator with five NOT gates.

The frequency of oscillation will be $f=\frac{1}{2 N t_{p d}}$.

$$
\begin{aligned}
N & =\text { number of NOT gates in cascade } \\
t_{p d} & =\text { propagation delay of each NOT gate. } \\
\therefore \quad t & =\frac{1}{2 \times 5 \times 25 n s}=4 \times 10^{6} \mathrm{~Hz}=4 \mathrm{MHz} .
\end{aligned}
$$

