

## DETAILED EXPLANATIONS

1. (b)

Back emf is given by,

$$
\begin{aligned}
E_{b} & =\frac{N P \phi Z}{A \times 60} \\
& =\frac{1000 \times 0.15 \times 100}{60}=250 \mathrm{~V} \\
I_{a} & =\frac{280-250}{0.2}=150 \mathrm{~A}
\end{aligned}
$$


2. (a)

Let, $\quad$ induced emf $=x$

$$
\begin{equation*}
x+I_{a} r_{a}=300 \mathrm{~V} \tag{i}
\end{equation*}
$$

When load is reduced to half,

$$
\begin{equation*}
x+\frac{I_{a} r_{a}}{2}=250 \mathrm{~V} \tag{ii}
\end{equation*}
$$

Solving equation (i) and (ii), we get
Induced emf, $x=200 \mathrm{~V}$
3. (b)

For maximum efficiency,
Constant loss $=$ losses proportional to square of variable
Cu loss $=I^{2} R$
Brush loss $\propto I$ (so it is not included in constant losses)
So, $\quad$ Constant loss $=150+200+P_{i}$
$150+200+P_{i}=400$ $P_{i}=50 \mathrm{~W}$
4. (b)

The motor and generator are identical
DC supply given to motor,

$$
V=1 \text { p.u. }
$$

Current in both motor and generator

$$
\begin{aligned}
I_{\mathrm{am}} & =I_{a g}=1 \text { p.u. } \\
R_{a m} & =R_{a g}=0.02 \text { p.u. }
\end{aligned}
$$

Back emf in motor, $E_{m}=V-I_{a m} R_{a m}$

$$
E_{m}=1-1 \times 0.02=0.98 \text { p.u. }
$$

Also

$$
E_{m} I_{m}=E_{g} I_{a g}
$$

$\Rightarrow \quad E_{m}=E_{g}=0.98$ p.u.
Terminal voltage of generator,

$$
\begin{aligned}
V_{g} & =E_{g}-I_{a g} \cdot R_{a g} \\
& =0.98-1 \times 0.02=0.96 \text { p.u. } \\
\text { Load resistance } & =\frac{V_{g}}{I_{g}}=\frac{0.96}{1.0}=0.96 \text { p.u. }
\end{aligned}
$$

5. (d)

For series motor,

$$
T \propto I_{a}^{2}
$$

or,

$$
\begin{equation*}
I_{a} \propto \sqrt{T} \tag{i}
\end{equation*}
$$

and also,
$E_{b} \propto N \phi$
$E_{b} \propto N I_{a} \quad\left(\right.$ as $\left.\phi \propto I_{a}\right)$

$$
N \propto \frac{E_{b}}{I_{a}}
$$

$$
T \rightarrow \text { Torque }
$$

or

From equation (i),

$$
N \propto \frac{E_{b}}{\sqrt{T}}
$$

6. (a)

$$
\begin{aligned}
T & =K \phi I_{a}=300 \\
E & =V-I_{a} R_{a}=K \phi \omega \\
600-0.5 I_{a} & =2 \pi \times \frac{1500}{60} \times \frac{300}{I_{a}} \\
0.5 I_{a}^{2}-600 I_{a}+47123.8 & =0 \\
I_{a} & =84.49 \mathrm{~A} \\
K \phi & =3.55 \mathrm{Nm} / \mathrm{A} \\
I_{a}^{\prime} & =\frac{T}{(K \phi)^{\prime}}=\frac{300}{0.9 \times 3.55}=93.89 \mathrm{~A}
\end{aligned}
$$

7. (b)

$$
\begin{aligned}
\text { Rotation speed } & =600 \mathrm{rpm} \\
N & =\frac{600}{60}=10 \mathrm{rev} / \mathrm{sec}
\end{aligned}
$$

Peripheral velocity of commutator,

$$
\begin{aligned}
V_{P} & =\pi D N \\
& =\pi \times 50 \times 10 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

As we know,

$$
V_{P} \times t_{c}=\text { Brush width }
$$

$\therefore \quad$ Time of commutation, $t_{c}=\frac{2}{\pi \times 50 \times 10}=1.273 \mathrm{msec}$
8. (b)

$$
\text { Back emf, } \begin{aligned}
E_{b} & =\frac{P \phi N Z}{60 \mathrm{~A}} \quad(A=P \text { for lap winding }) \\
& =\frac{0.6 \times 10^{-3} \times 750 \times 2000}{60}=15 \mathrm{~V}
\end{aligned}
$$

9. (d)

We know that, emf generated,

$$
E=\frac{P \phi N Z}{60 \mathrm{~A}}=\phi \times 50 \times 18 \times \frac{9000}{60} \times \frac{4}{2}
$$

$$
\begin{aligned}
& 357 \\
& \text { Flux per pole, } \quad \phi \times 50 \times 18 \times \frac{9000}{60} \times \frac{4}{2} \\
& \quad \phi=1.32 \mathrm{mWb}
\end{aligned}
$$

10. (b)

Field current,

$$
\text { No load armature current, } \quad I_{a 0}=16-2=14 \mathrm{~A} \text {; }
$$

Constant losses,

$$
\begin{aligned}
I_{f} & =\frac{250}{125}=2 \mathrm{~A} \\
I_{a 0} & =16-2=14 \mathrm{~A} ; \\
P_{K} & =\left(250 \times 14-(14)^{2} \times 0.2\right)+250 \times 2=3960.8 \mathrm{~W} \\
I_{a} & =152-2=150 \mathrm{~A} \\
P_{L} & =I_{a}^{2} R_{a}+P_{K}=(150)^{2} \times 0.2+3960.8 \\
& =8.461 \mathrm{~kW} \\
P_{\text {in }} & =250 \times 152=38 \mathrm{~kW}
\end{aligned}
$$

$$
\therefore \quad \text { Efficiency, } \eta_{n}=\frac{38-8.461}{38} \times 100=77.73 \%
$$

11. (a)

Series excited and should have polarity opposite to that of the next main pole in the direction of rotation of armature.
12. (c)

Compensating winding, $\mathrm{AT} /$ pole $=$ armature $\mathrm{AT} /$ pole $\times \frac{\text { Pole arc }}{\text { Pole pitch }}$

$$
=19000 \times 0.7=13300
$$

$$
\text { Turn } / \text { pole }=\frac{A T_{c w} / \text { pole }}{\text { Armature current }}=\frac{13300}{1000}=13.3 \approx 14
$$

No. of compensating conductor per pole,

$$
14 \times 2=28
$$

$$
\begin{aligned}
\text { AT for airgap under interpole } & =\frac{B_{g}}{\mu_{0}} l_{g}=\frac{0.3}{4 \pi \times 10^{-7}} \times 1 \times 10^{-2}=2387.324 \mathrm{ATs} \\
\text { Net AT for interpole } & =19000+2387.324-14000 \\
\text { No. of turns in interpole } & =\frac{19000+2387.324-14000}{1000} \approx 8
\end{aligned}
$$

13. (b)


As generator:
Load current, $I_{L_{1}}=\frac{60 \times 1000}{200}=300 \mathrm{~A}$

Armature current, $I_{a_{1}}=I_{L_{1}}+I_{f}=300+\frac{200}{100}=302 \mathrm{~A}$
Generator induced emf, $E_{g 1}=V_{t}+I_{a 1} R_{a}+$ brush drop

$$
E_{g 1}=200+2+302 \times 0.1=232.2 \mathrm{~V}
$$

When belt breaks it will behave as motor then

$$
\text { Now, } \begin{aligned}
I_{L_{2}} & =\frac{5000}{200}=25 \mathrm{~A} \\
I_{\mathrm{a} 2} & =I_{L_{2}}-I_{f}=25-2=23 \mathrm{~A} \\
E_{b_{2}} & =200-2-23 \times 0.1=195.7 \mathrm{~V}
\end{aligned}
$$

as $E \propto N \phi$ or $E \propto N \quad \phi \rightarrow$ constant

$$
\begin{aligned}
& \frac{E_{b 1}}{E_{b 2}} & =\frac{N_{1}}{N_{2}} \\
\Rightarrow & \frac{232.2}{195.7} & =\frac{500}{N_{2}} \\
\Rightarrow & \text { Speed, } N_{2} & =421.4 \mathrm{rpm}
\end{aligned}
$$

14. (a)

$$
\begin{aligned}
A T_{\mathrm{CW}} / \text { Pole } & =A T_{a}(\text { peak }) \times \frac{\text { Pole arc }}{\text { Pole pitch }} \\
& =20000 \times 0.8=16000 \\
A T_{a}(\text { peak }) \text { interpolar region } & =20000-16000=4000 \\
A T_{i} & =A T_{a}(\text { peak })+\frac{B_{i}}{\mu_{0}} l_{g l} \\
& =4000+\left[\frac{0.3}{4 \pi \times 10^{-7}} \times 1.2 \times 10^{-2}\right]=6865 \mathrm{AT} / \mathrm{P} \\
N_{i} & =\frac{6865}{1000} \approx 7 \text { turns }
\end{aligned}
$$

15. (d)

$$
\begin{aligned}
\text { No load loss } & =200 \times 10=2000 \mathrm{~W} \\
I_{f} & =\frac{200}{100}=2 \mathrm{~A} \\
\text { Core loss } & =(200 \times 8)-\left(8^{2} \times 0.2\right) \\
& =1587.2 \mathrm{~W}
\end{aligned}
$$

At load:

$$
\text { Stray load loss }=0.5 \times 2000=1000 \mathrm{~W}
$$



$$
\begin{aligned}
& P_{L}=\left(I_{a}^{2} R_{a}+V_{\text {brush }} I_{a}+P_{\text {stray }}\right)+\left(P_{\text {core }}+P_{\text {shunt field }}\right) \\
& P_{L}=\left(98^{2} \times 0.2\right)+(2 \times 98)+1000+1587.2+(200 \times 2) \\
& P_{L}=5.104 \mathrm{~kW}
\end{aligned}
$$

16. (a)


$$
\text { Load current }=200 \mathrm{~A}
$$

Voltage rise due to booster $=50 \mathrm{~V}$
Voltage drop in feeder $=I_{L} \times$ feeder resistance

$$
=200 \times 0.3=60 \mathrm{~V}
$$

Voltage difference between station bus-bar and far end of the feeder.

$$
=60-50=10 \mathrm{~V}
$$

17. (c)

For an over compounded dc generator, percentage of compounding $=$ voltage regulation

$$
\begin{aligned}
\% \epsilon_{R} & =\left(\frac{E_{a}-V}{V}\right) \times 100=\left(\frac{I_{a} R_{a}}{V}\right) \times 100 \\
& =\left(\frac{800 \times 0.02}{500} \times 100\right)=\frac{16}{5}=3.2 \%
\end{aligned}
$$

18. (b)


Armature power developed,

$$
\begin{aligned}
& =\text { shaft power }+ \text { rotational losses } \\
& =1.5 \mathrm{~kW}+0.1 \mathrm{~kW} \\
E_{b} I_{a} & =1.6 \mathrm{~kW}
\end{aligned}
$$

Back emf is given by,

$$
E_{b}=\frac{N P \phi Z}{A \times 60}=\frac{N \times 0.035 \times 500}{60}
$$

$$
(\text { For lap } A=P)
$$

and armature current, $\quad I_{a}=\frac{230-E_{b}}{0.06}$

$$
\begin{aligned}
E_{b}\left(\frac{230-E_{b}}{0.06}\right) & =1600 \\
230 E_{b}-E_{b}^{2}-96 & =0 \\
E_{b} & =229.58 \mathrm{~V} \\
\text { Speed, } N & =\frac{60 E_{b}}{\phi Z}=\frac{60 \times 229.58}{0.035 \times 500} \\
N & =787.13 \mathrm{rpm}
\end{aligned}
$$

19. (b)

Load characteristic is

$$
T_{L} \propto N^{2}
$$

For dc series motor, torque-current relation is given by

$$
\therefore \quad \begin{aligned}
T_{d} & \propto I_{a}^{2} \\
\therefore \quad \frac{I_{a 2}}{I_{a 1}} & =\frac{N_{2}}{N_{1}} \\
\frac{I_{a 2}}{15} & =\frac{750}{1500} \\
I_{a 2} & =7.5 \mathrm{~A}
\end{aligned}
$$

Case-I:

$$
\begin{aligned}
& E_{a 1}=200-15 \times(0.03+0.05) \\
& E_{a 1}=198.8 \mathrm{~V}
\end{aligned}
$$

## Case-II:



When additional resistance added in series with the armature circuit,

Now,

$$
\begin{aligned}
& I_{a 2}=7.5 \mathrm{~A}, \\
& N_{2}=750 \mathrm{rpm}
\end{aligned}
$$

$$
E_{a} \propto \phi \omega_{m}
$$

$$
\begin{aligned}
\frac{E_{a 2}}{E_{a 1}} & =\frac{N_{2}}{N_{1}} \frac{I_{a 2}}{I_{a 1}} \\
\frac{E_{a 2}}{198.8} & =\frac{750 \times 7.5}{1500 \times 15} \\
E_{a 2} & =49.7 \mathrm{~V} \\
E_{a 2} & =200-7.5\left(0.08+R_{\mathrm{ext}}\right)=49.7 \\
0.08+R_{\mathrm{ext}} & =\frac{200-49.7}{7.5} \\
R_{\mathrm{ext}} & =20.04-0.08 \\
& =19.96 \Omega
\end{aligned}
$$

20. (c)

We know that,

$$
\text { Torque, } T \propto \phi I_{a}
$$

So,

$$
\begin{aligned}
\frac{T_{1}}{T_{2}} & =\frac{\phi_{1} I_{a 1}}{\phi_{2} I_{a 2}} \\
T_{2} & =\frac{\phi_{2} I_{a 2}}{\phi_{1} I_{a 1}} \times T_{1}
\end{aligned}
$$

Given,

$$
\phi_{2}=1.2 \phi_{1}, I_{a 1}=40 \mathrm{~A}, I_{a 2}=60 \mathrm{~A}
$$

Torque developed, $\quad T_{2}=1.2 \times \frac{60}{40} \times 20=36 \mathrm{~N}-\mathrm{m}$
21. (a)

Output power, $\quad \begin{aligned} P_{0} & =240 \times 100 \\ & =24000 \mathrm{~W}\end{aligned}$
Shunt field current, $\quad I_{f}=3 \mathrm{~A}$,
Armature current, $\quad I_{a}=100+3=103 \mathrm{~A}$
Series field current, $\quad I_{s e}=\frac{0.04}{0.04+0.01} \times 100=80 \mathrm{~A}$

$$
\begin{aligned}
I_{d} & =100-80=20 \mathrm{~A} \\
E_{a} & =V_{t}+I_{L} R_{f e}+I_{s} R_{s}+I_{a} R_{a} \\
& =240+100 \times 0.03+80 \times 0.01+103 \times 0.05 \\
& =248.95 \mathrm{~V} \\
V_{f} & =E_{a}-I_{a} R_{a} \\
& =248.95-103 \times 0.05=243.8 \mathrm{~V}
\end{aligned}
$$

Hence,

$$
R_{f}=\frac{243.8}{3}=81.267 \Omega
$$

Copper losses :
Armature :

$$
I_{a}^{2} R_{a}=103^{2} \times 0.05=530.45 \mathrm{~W}
$$

Series field : $\quad I_{s}^{2} R_{s}=80^{2} \times 0.01=64 \mathrm{~W}$
Shunt field: $\quad I_{f}^{2} R_{f}=3^{2} \times 81.267=731.4 \mathrm{~W}$
Diverter resistance: $I_{d}^{2} R_{d}=20^{2} \times 0.04=16 \mathrm{~W}$
Feeder resistance: $I_{L}^{2} R_{f e}=100^{2} \times 0.03=300 \mathrm{~W}$
Total copper loss : $\quad P_{c u}=530.45+64+731.4+16+300$

$$
=1641.85 \mathrm{~W}
$$

Thus, the power developed is

$$
\begin{aligned}
P_{d} & =P_{0}+P_{c u}=24000+1641.85 \\
& =25641.85 \mathrm{~W}
\end{aligned}
$$

The power input is,

$$
\begin{aligned}
P_{i n} & =P_{d}+P_{r} \\
& =25641.85+2000 \\
& =27641.85 \mathrm{~W}
\end{aligned}
$$

Hence, the efficiency is

$$
\eta=\frac{P_{0}}{P_{\text {in }}}=\frac{24000}{27641.85}=0.8682 \text { (or) } 86.82 \%
$$

22. (a)

For series DC motor,

$$
T \propto I^{2}
$$

as torque is constant means current also remains constant

$$
T=\frac{E_{b} I_{a}}{\omega}
$$

as both $T$ and $I_{a}$ as constant

$$
E_{b} \propto \omega
$$

In case of series connection $E_{b} \approx V / 2$
for parallel connection, $E_{b} \approx V$
So speed becomes double
23. (a)

The shunt field current is

$$
I_{f}=\frac{120}{40}=3 \mathrm{~A}
$$

For maximum efficiency,
or,

$$
\begin{aligned}
I_{L m}^{2}\left(\mathrm{R}_{a}+\mathrm{R}_{s}\right) & =P_{r}+I_{f}^{2}\left(R_{a}+R_{s}+R_{f}\right) \\
I_{L m}^{2}(0.05+0.02) & =3^{2}(0.05+0.02+40)+2000
\end{aligned}
$$

Thus the power output at maximum efficiency is:

$$
P_{0}=120 \times 183.64=22036.8 \mathrm{~W}
$$

The total copper loss is

$$
\begin{aligned}
P_{c u} & =I_{a}^{2}\left(R_{a}+R_{s}\right)+I_{f}^{2} R_{f} \\
& =(183.64)^{2} \times 0.07+(3)^{2} \times 40 \\
& =2720.65 \mathrm{~W}
\end{aligned}
$$

The power developed at maximum efficiency is

$$
\begin{aligned}
P_{d} & =P_{0}+P_{c \mathrm{u}} \\
& =22036.8+2720.65=24757.45 \mathrm{~W}
\end{aligned}
$$

The power input : $\quad P_{\text {in }}=24757.45+2000=26757.45 \mathrm{~W}$
Hence, the maximum efficiency is :

$$
\eta=\frac{22036.8}{26757.45}=0.8235 \quad \text { (or) } \quad 82.35 \%
$$

24. (a)

Open circuit $\left(I_{a}=0\right)$, then

$$
V_{t}=E_{a}=250 \mathrm{~V} \text { at } 3000 \mathrm{rpm}
$$



Now, $\quad V_{t}=255 \mathrm{~V}$
As $V_{t}>E_{a}$, the machine is acting as a motor

$$
I_{a}=\frac{V_{t}-E_{a}}{R_{a}}=\frac{255-250}{0.05}=100 \mathrm{~A}
$$

The current flowing into the positive terminal in opposition to $E_{a^{\prime}}$, therefore
Electromagnetic power $=E_{a} I_{a}=250 \times 100$
$=25 \mathrm{~kW}=$ mechanical power output
Speed $=3000 \mathrm{rpm}$
or, $\quad \frac{3000 \times 2 \pi}{60}=314.16 \mathrm{rad} / \mathrm{s}$
Electromagnetic torque,

$$
T_{\mathrm{em}}=\frac{E_{a} I_{a}}{\omega_{m}}=\frac{25 \times 10^{3}}{314.16}=79.58 \mathrm{~N}-\mathrm{m}
$$

25. (b)

$$
\begin{aligned}
& A T_{\mathrm{cw} / \text { pole }}
\end{aligned}=\frac{I_{a} \mathrm{Z}}{2 A P}\left(\frac{\text { Pole arc }}{\text { Pole pitch }}\right) .
$$

Compensating conductor/pole

$$
=2.78 \times 2=5.56 \approx 6 \text { (nearest integer) }
$$

26. (c)

$$
\text { Firing angle, } \alpha=0^{\circ}
$$

$$
\begin{aligned}
\frac{3 \sqrt{2} V_{l}}{\pi} \cos \alpha & =230 \\
V_{l} & =170.31 \mathrm{~V}
\end{aligned}
$$

At

$$
\text { Speed, } N=1500 \mathrm{rpm}
$$

$$
\text { Back emf, } E_{1}=230-20 \times 0.6=218 \mathrm{~V}
$$

At half rated torque,

$$
\begin{aligned}
\text { Current, } I_{2} & =\frac{1}{2} \times 20=10 \mathrm{~A} \\
\text { Back emf, } E_{2} & =-\frac{900}{1500} \times 218=-130.8 \mathrm{~V} \\
\frac{3 \sqrt{2}}{\pi} V_{l} \cos \alpha & =-130.8+10 \times 0.6 \\
\alpha & =122.86^{\circ}
\end{aligned}
$$

27. (b)

$$
\begin{aligned}
T & =K \phi I_{a} \\
K \phi & =\frac{10}{10}=1 \mathrm{Nm} / \mathrm{A} \\
T & =25 \mathrm{Nm} \\
K \phi I_{a} & =25 \\
I_{a} & =25 \mathrm{~A} \\
V & =E+I_{a} R_{a}
\end{aligned}
$$

$$
\text { Now, } \quad T=25 \mathrm{Nm}
$$

$$
\begin{aligned}
200 & =K \phi \omega+25 \times 0.2 \\
\omega \times 1 & =195 \\
\frac{2 \pi N}{60} & =195 \\
N & =1862.11 \mathrm{rpm}
\end{aligned}
$$

28. (a)

At no load;

$$
\text { Back emf, } \begin{aligned}
E_{b 0} & =V_{t}-I_{a 0}\left(R_{a}\right) \\
E_{b 0} & =220-3(0.5) \\
E_{b 0} & =218.5 \mathrm{~V}
\end{aligned}
$$

At full load;

$$
\text { Back emf, } \begin{aligned}
E_{b \mathrm{fl} l} & =V_{t}-I_{a f l}\left(R_{a}\right) \\
& =220-45(0.5) \\
E_{b \mathrm{f} l} & =197.5 \mathrm{~V}
\end{aligned}
$$

As flux is given constant;
then, we can write; $\quad E_{b} \propto N$
or, $\quad \frac{E_{b f l}}{E_{b 0}}=\frac{N_{f l}}{N_{0}}$

$$
\begin{aligned}
N_{f l} & =\left(\frac{197.5}{218.5}\right) \times 1500 \\
& =1355.83 \approx 1356 \mathrm{rpm}
\end{aligned}
$$

29. (a)

The motor and generator are identical.
DC supply given to motor

$$
V=1 \text { p.u. }
$$

Current in both motor and generator
$I_{a m}=I_{a g}=1$ p.u.
Armature resistance, $R_{a m}=R_{a g}=0.015$ p.u.
Back emf in motor, $E_{m}=V-I_{a m} \cdot R_{a m}$

$$
\begin{aligned}
E_{m} & =1-(1 \times 0.015) \\
& =0.985 \text { p.u. }
\end{aligned}
$$

As rotational losses are negligible,
Power output of motor $=$ Power input to generator
or, $\quad E_{m} I_{a m}=E_{g} \cdot I_{a g}$
or, $\quad E_{m}=E_{g}=0.985$ p.u.
Terminal voltage of generator

$$
V_{g}=E_{g}-I_{a g} \cdot R_{a g}=0.985-(1 \times 0.015)=0.97 \text { p.u. }
$$

Load resistance $=\frac{V_{g}}{I_{g}}=\frac{0.97}{1.0}=0.97$ p.u.
30. (d)


From similarity of triangles for generator 1,

$$
\begin{align*}
\frac{50-y}{x} & =\frac{50-20}{500} \\
50-y & =0.06 x \\
0.06 x+y & =50 \tag{i}
\end{align*}
$$

For second triangle,

$$
\begin{align*}
\frac{60-y}{700-x} & =\frac{60-20}{400} \\
60-y & =70-0.1 x \\
0.1 x-y & =10 \tag{ii}
\end{align*}
$$

Solving the equations (i) and (ii), we get

$$
y=27.5 \mathrm{~V}
$$

Voltage $=27.5 \mathrm{~V}$

