

MPDEE ERS,

## Detailed Explanations

1. (b)

Given,

$$
\begin{aligned}
\mu_{n} & =3900 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{sec}^{-1}=0.39 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{sec} \\
m_{e} & =0.16 m_{o}=0.16 \times 9.1 \times 10^{-31}
\end{aligned}
$$

We know that mean free time,

$$
\begin{aligned}
\tau_{c} & =\frac{\mu_{n} m_{e}}{q}=\frac{0.39 \times 0.16 \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19}} \\
\therefore \quad \tau_{c} & =0.3549 \times 10^{-12} \mathrm{sec} \\
& \tau_{c}
\end{aligned}
$$

2. (d)

Given, radiative lifetime $\tau_{r}$
Non-radiative lifetime $\tau_{n r}$
Efficiency of radiative recombination,

$$
\% \eta=\frac{\tau_{n r} \times 100}{\tau_{r}+\tau_{n r}}=\frac{100}{20}=5 \%
$$

3. (c)
4. (b)

Given,

$$
\begin{aligned}
I_{D-n} & =I_{D-p} \\
\frac{K_{n}^{\prime}}{2} \times \frac{W_{n}}{L} \times\left(V_{0 \mathrm{~V}}\right)^{2} & =\frac{K_{p}^{\prime}}{2} \times \frac{W_{p}}{L} \times\left(V_{0 \mathrm{~V}}\right)^{2} \\
K_{n}^{\prime} \times W_{n} & =K_{p}^{\prime} \times W_{p}
\end{aligned}
$$

But,

$$
K_{n}^{\prime}=\mu_{n} C_{o x} ; K_{p}^{\prime}=\mu_{p} C_{o x}
$$

$\Rightarrow \quad \mu_{n} C_{o x} W_{n}=\mu_{p} C_{o x} W_{p}$
$\therefore \quad \frac{W_{p}}{W_{n}}=\frac{\mu_{n}}{\mu_{p}}=\frac{\mu_{n}}{0.4 \mu_{n}}=2.5$
5. (d)

Given: $\quad I_{\text {CBO }}=0.5 \mu \mathrm{~A} ; I_{\text {CEO }}=27 \mu \mathrm{~A}$
We know that, $\quad I_{\text {CEO }}=(1+\beta) I_{\text {CBO }}$

$$
27=\gamma \times 0.5
$$

$\therefore \quad \gamma=\frac{27}{0.5}=54$
7. (c)

Since, NMOS transistor is in saturation region,

$$
\begin{aligned}
I_{D S} & =\frac{1}{2}\left(\mu_{n} C_{o x}\right)\left(\frac{W}{L}\right) V_{o \mathrm{~V} \text { where, } V_{o \mathrm{~V}}=V_{G S}-V_{t}} \\
\therefore \quad 100 \times 10^{-6} & =\frac{1}{2} \times 387 \times 10^{-6} \times 10 \times V_{o \mathrm{~V}}^{2} \\
\text { Thus, } \quad V_{o \mathrm{~V}} & =0.23 \mathrm{~V} \\
& V_{G S}
\end{aligned}=V_{t}+V_{o \mathrm{~V}}=0.5+0.23 \mathrm{~V}=0.73 \mathrm{~V}
$$

9. (b)

Energy change $=\Delta E=E_{g}$.


Momentum remains the same.
10. (c)
$E_{i}$ has gone below $E_{f}$, thus indicating concentration of electrons exceeds concentration of holes near semiconductor oxide junction and the event is called as surface inversion.
11. (a)

Given: $N_{a}=10^{18} \mathrm{~cm}^{-3} ; N_{d}=10^{17} \mathrm{~cm}^{-3} ; n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$
The maximum electric field in the depletion region of an abrupt pn junction is,

$$
E_{\max }=\frac{-2 V_{b i}}{W}
$$

where,

$$
\begin{aligned}
V_{b i} & =\text { Built in potential } \\
& =\frac{k T}{q} \ln \left[\frac{N_{a} N_{d}}{n_{i}^{2}}\right]=26 \times 10^{-3} \ln \left[\frac{10^{18} \times 10^{17}}{\left(1.5 \times 10^{10}\right)^{2}}\right] \\
V_{b i} & =0.876 \mathrm{~V}
\end{aligned}
$$

The maximum electric field at abrupt pn junction (in magnitude)

$$
\left|E_{\max }\right|=\frac{2 V_{b i}}{W}
$$

Width,

$$
\begin{aligned}
W & =\sqrt{\frac{2 \epsilon_{\mathrm{S}_{\mathrm{i}}}}{q}\left[\frac{1}{N_{a}}+\frac{1}{N_{d}}\right] V_{b i}}=\sqrt{\frac{2 \times 1.05 \times 10^{-12}}{1.6 \times 10^{-19}}\left[\frac{1}{10^{18}}+\frac{1}{10^{17}}\right] 0.876}=1.12 \times 10^{-5} \mathrm{~cm} \\
\left|E_{\max }\right| & =\frac{2 \times 0.876}{1.12 \times 10^{-5}}=1.56 \times 10^{5} \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

12. (b)

Diffusion capacitance, $C_{D}=\frac{\tau I_{f}}{\eta V_{T}}$

$$
\begin{array}{ll} 
& C_{D} \propto I_{f} \\
\text { and } & C_{D} \propto \frac{1}{T}
\end{array}
$$

13. (b)

Given,Acceptor doping, $N_{a}=3 \times 10^{13} \mathrm{~cm}^{-3}$

$$
n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}
$$

Fermi level, $\quad E_{F}=E_{i}-k T \ln \left(\frac{N_{a}}{n_{i}}\right)$

$$
E_{F}=E_{i}-26 \times 10^{-3} \ln \left(\frac{3 \times 10^{13}}{1.5 \times 10^{10}}\right)=E_{i}-0.197 \mathrm{eV}
$$

14. (b)

The depletion capacitance of a PN junction diode,

$$
\begin{array}{rlrl}
C_{d p} & =A \sqrt{\frac{q \epsilon_{\mathrm{Si}}}{2\left(\phi_{b i}-V_{R B}\right)} \frac{N_{A} N_{D}}{N_{A}+N_{D}}} \\
\therefore \quad C_{d p} & \propto \frac{1}{\sqrt{\phi_{b i}-V_{R B}}} \\
\therefore \quad \frac{10 \mathrm{pF}}{C_{d p}^{\prime}} & =\sqrt{\frac{0.7+20}{0.7+10}} \\
& C_{d p}^{\prime} & =7.19 \mathrm{pF}
\end{array}
$$

15. (b)

$$
\begin{aligned}
\text { We know that, } \quad I_{C} & =\beta I_{B}+I_{\mathrm{CEO}} \\
2 & =80 \times 0.02+I_{\mathrm{CEO}} \\
I_{\mathrm{CEO}} & =2-80 \times 0.02=0.4 \mathrm{~mA} \\
\alpha & =\frac{\beta}{\beta+1}=\frac{80}{80+1}=0.988 \\
\therefore \quad I_{\mathrm{CBO}} & =(1-\alpha) I_{\mathrm{CEO}}=(1-0.988) \times 0.4=0.0048 \mathrm{~mA}
\end{aligned}
$$

16. (a)

Given, $\quad \phi_{s}=0.035 \mathrm{~V}$

$$
V_{G}=V_{o x}+\phi_{s}
$$

$$
\begin{aligned}
& V_{o x}=\frac{\sqrt{2 q N_{A} \varepsilon_{s i} \phi_{S}}}{C_{o x}} \\
& C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{0.36 \times 10^{-12}}{1.8 \times 10^{-4}}=2 \times 10^{-9} \mathrm{~F} / \mathrm{cm}^{2} \\
& V_{o x}=\frac{\sqrt{2 \times 1.6 \times 10^{-19} \times 1.25 \times 10^{15} \times 1.04 \times 10^{-12} \times 0.035}}{2 \times 10^{-9}}=1.9078 \mathrm{~V} \\
& V_{G}=V_{o x}+\phi_{s}=1.9078+0.035=1.943 \mathrm{~V}
\end{aligned}
$$

17. (c)

For an npn transistor the emitter injection efficiency is given as

$$
\gamma \approx \frac{1}{1+\frac{N_{B}}{N_{E}} \cdot \frac{D_{E}}{D_{B}} \cdot \frac{x_{B}}{x_{E}}}
$$

and the magnitude of Early voltage is inversely proportional to the doping concentration.
18. (b)

Both electrons and holes diffuse from higher concentration to lower concentration:


Also, the hole current direction is same in the direction of the hole movement and electron current direction is opposite to the electron movement.
Holes drift in the direction of electric field and electrons drift in the direction opposite to electric field.

19. (b)

$$
\begin{aligned}
& \qquad \begin{aligned}
n_{i} & =\sqrt{N_{c} N_{v}} e^{-E_{G} / 2 k T}=\sqrt{10^{19} \times 5 \times 10^{18}} e^{\frac{-1.1}{2 \times 0.026}} \\
& n_{i}
\end{aligned}=4.6 \times 10^{9} \mathrm{~cm}^{-3} \\
& \text { Also, } \quad N_{D} \\
& \Rightarrow \quad 10^{17} \mathrm{~cm}^{-3} \\
&
\end{aligned} \quad \begin{aligned}
& =N_{D}=10^{17} \mathrm{~cm}^{-3} \quad \text { (fully ionisation) } \\
E_{f}-E_{f i} & =K T \ln \left(\frac{n}{n_{i}}\right)=K T \ln \left(\frac{N_{D}}{n_{i}}\right)=0.026 \ln \left(\frac{10^{17}}{4.6 \times 10^{9}}\right)=0.44 \mathrm{eV}
\end{aligned}
$$

20. (b)

$$
\begin{aligned}
D_{P} & =\frac{K T}{q} \mu_{P}=0.0259 \times 500=12.95 \mathrm{~cm}^{2} / \mathrm{s} \\
L_{P} & =\sqrt{D_{P} \tau_{P}}=\sqrt{12.95 \times 10^{-10}}=3.6 \times 10^{-5} \mathrm{~cm}
\end{aligned}
$$

If,

$$
\begin{aligned}
P & =P_{0}+\Delta P e^{-x / L_{P}} \\
I_{P} & =-q A D_{P} \frac{d}{d x} P=q \frac{A D_{P}}{L_{P}} \Delta P e^{-x / L_{P}} \\
& =1.6 \times 10^{-19} \times 0.5 \times \frac{12.95}{3.6 \times 10^{-5}} \times 5 \times 10^{16} e^{\frac{-10^{-5}}{3.6 \times 10^{-5}}} \\
I_{P} & =1.09 \times 10^{3} \mathrm{~A}
\end{aligned}
$$

21. (a)

Given,

$$
\begin{align*}
I_{D} & \simeq I_{S} e^{V_{D} / V_{T}} \\
e^{V_{D} / V_{T}} & =\frac{I_{D}}{I_{S}} \\
V_{D} & =V_{T} \ln \left(\frac{I_{D}}{I_{S}}\right) \tag{i}
\end{align*}
$$

Let $I_{1}$ be the required current corresponding to new voltage $V_{D 1}$.

$$
\begin{array}{lrl}
\therefore & I_{1} & =n I_{D} \\
\text { from equation (i) } & V_{\mathrm{D} 1} & =V_{T} \ln \left(\frac{n I_{D}}{I_{S}}\right)
\end{array}
$$

We can write, $\quad V_{D 1}=V_{T} \ln \left(\frac{I_{D}}{I_{S}}\right)+V_{T} \ln (n)$

$$
V_{D 1}=V_{D}+V_{T} \ln (n)
$$

23. (c)

Given, Responsivity, $R=0.5 \mathrm{~A} / \mathrm{W}$

$$
\text { Efficiency, } \begin{aligned}
\eta & =\frac{I_{p h} \times h c}{P_{o p} \times q \lambda} \\
& =R \cdot \frac{h c}{q \lambda} \\
\eta & =\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{0.5 \times 1.6 \times 10^{-19} \times 850 \times 10^{-9}}=0.73 \\
\eta & =0.73
\end{aligned}
$$

24. (b)

We know that, the electron current density in the nри transistor,

$$
\begin{aligned}
J_{n} & =q D_{n} \frac{d n}{d x} \\
J_{n} & =q D_{n}\left(-\frac{n_{p}(0)}{W}\right) \\
\therefore \quad J_{n} & =1.6 \times 10^{-19} \times 5 \times\left(-\frac{1.2 \times 10^{5}}{0.6 \times 10^{-4}}\right) \\
\therefore \quad\left|J_{n}\right| & =16 \times 10^{-10} \mathrm{~A} / \mathrm{cm}^{2}
\end{aligned}
$$

25. (a)

$$
\text { Given, } \quad \begin{aligned}
& I_{D 1}=1 \mathrm{~mA} \text { for } V_{D S 1}=0.5 \mathrm{~V} \\
& \\
& I_{D 2}=1.8 \mathrm{~mA} \text { for } V_{D S 2}=2.5 \mathrm{~V}
\end{aligned}
$$

For drain current $\left(I_{D}\right)$ in saturation region of operation when channel length modulation present is,

$$
\begin{aligned}
I_{D} & =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right) \\
I_{D} & \propto\left(1+\lambda V_{D S}\right) \\
\frac{I_{D 1}}{I_{D 2}} & =\frac{1+\lambda V_{D S 1}}{1+\lambda V_{D S 2}} \\
\frac{1}{1.8} & =\frac{1+\lambda \times 0.5}{1+\lambda \times 2.5} \\
\Rightarrow \quad 1+2.5 \lambda & =1.8+0.9 \lambda \\
\Rightarrow \quad 1.6 \lambda & =0.8 \\
\lambda & =\frac{0.8}{1.6}=0.5 \mathrm{~V}^{-1}
\end{aligned}
$$

26. (b)

Clearly from the given graph,
Semiconductor potential, $\phi_{s}=V_{G}-V_{o x}=1.8-1.2=0.6 \mathrm{~V}$
The width of depletion region, under the strong inversion,

$$
\begin{aligned}
& W_{\max }=\left[\frac{2 \epsilon_{S i}\left(\phi_{s}\right)}{q N_{a}}\right]^{1 / 2} \\
& W_{\max }=\left[\frac{2 \times 1.04 \times 10^{-12} \times 0.6}{1.6 \times 10^{-19} \times 1.5 \times 10^{15}}\right]^{1 / 2} \\
& W_{\max }=0.72 \times 10^{-4} \mathrm{~cm}=0.72 \mu \mathrm{~m}
\end{aligned}
$$

27. (c)

At flatband voltage, hole concentration is equal to doping concentration.
$\therefore$ At the junction, $p=N_{a}=10^{16} \mathrm{~cm}^{-3}$
At threshold voltage, $e^{-}$concentration is equal to doping concentration.
$\therefore$ At the junction, $n=N_{a}=10^{16} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
\therefore \quad p(x=0) & =\frac{n_{i}^{2}}{n}=\frac{10^{20}}{10^{16}} \\
p & =10^{4} \mathrm{~cm}^{-3}
\end{aligned}
$$

28. (a)

Under active mode biasing
Collector base junction is reverse bias. The punch through voltage,

$$
V_{C B} \propto\left[\frac{N_{C} N_{B}}{N_{C}+N_{B}}\right]
$$

Clearly $\left[V_{C B}\right]_{T r \cdot A}<\left[V_{C B}\right]_{T r \cdot B}$
and it is limited by Avalanche Breakdown.
29. (c)

Let us assume that $D_{I}$ acceptor atoms per $\mathrm{cm}^{2}$ are implanted into a $p$-type substrate directly adjacent to the oxide-semiconductor interface. The shift in threshold voltage due to the implant is

$$
\Delta V_{T}=\frac{+q D_{I}}{C_{o x}}
$$

No. of acceptor atoms per unit area $=\frac{C_{o x} \times \Delta V_{T}}{e}$

$$
\begin{aligned}
& C_{o x}=\frac{\varepsilon_{o x}}{t}=\frac{3.9 \times 8.854 \times 10^{-14}}{22 \times 10^{-8}} \\
& C_{o x}=1.5695 \times 10^{-6} \mathrm{~F} / \mathrm{cm}^{2}
\end{aligned}
$$

No. of acceptor atoms per unit area

$$
\begin{aligned}
& =\frac{1.5695 \times 10^{-6} \times 0.5}{1.6 \times 10^{-19}} \\
& =4.9 \times 10^{12} \text { atoms } / \mathrm{cm}^{2} \\
& \simeq 5 \times 10^{12} \text { atoms } / \mathrm{cm}^{2}
\end{aligned}
$$

30. (d)

$$
\begin{array}{rlrl}
P_{i} & =\frac{1}{n_{i} q\left(\mu_{n}+\mu_{p}\right)} \Rightarrow \rho_{i} \propto \frac{1}{n_{i}} \\
\Rightarrow \quad & \frac{\rho_{i_{2}}}{\rho_{i_{1}}} & =\frac{n_{i_{1}}}{n_{i_{2}}}=\frac{T_{1}^{3 / 2} e^{-E_{G_{o}} / 2 K T_{1}}}{T_{2}^{3 / 2} e^{-E_{G_{0}} / 2 K T_{2}}} \\
\Rightarrow & 0.1 & =\left(\frac{300}{330}\right)^{3 / 2} e^{\frac{E_{G_{0}}}{2 K}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)} \\
\Rightarrow \quad-2.1596 & =\frac{E_{G_{o}}}{2 K}\left(\frac{1}{330}-\frac{1}{300}\right) \\
\Rightarrow \quad & E_{G_{o}} & =\frac{-2.1596 \times 2 K}{-3.03 \times 10^{-4}}=\frac{2.1596 \times 2 \times 8.625 \times 10^{-5}}{3.03 \times 10^{-4}}=1.229 \mathrm{eV} \simeq 1.3 \mathrm{eV}
\end{array}
$$

