
Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST
2019-2020

1. (a)

2. (c)

3. (c)

4. (a)

5. (a)

6. (c)

7. (b)

8. (c)

9. (b)

10. (b)

11. (a)

12. (c)

13. (a)

14. (d)

15. (b)

16. (c)

17. (d)

18. (d)

19. (c)

20. (d)

21. (b)

22. (d)

23. (b)

24. (b)

25. (b)

26. (a)

27. (a)

28. (a)

29. (c)

30. (b)

ANSWER KEY Theory of Computation

COMPUTER SCIENCE & IT

CLASS TEST
S.No. : 01 PT_CS_A+C_310819

Theory of Computation

Date of Test : 31/08/2019

© Copyright :www.madeeasy.in

6 Computer Science & IT

DE TAILED EXPL ANATIONS

1.1.1.1.1. (a)(a)(a)(a)(a)
L2 is even palindrome on {a, b}∗

L3 is odd palindrome on {a, b}∗

L1 is any palindrome on {a, b}∗

Clearly, L2 ⊂ L1 and L3 ⊂ L1 and L1 = L2 ∪ L3

2.2.2.2.2. (c)(c)(c)(c)(c)

A B C
b a

a

aa b

R.E. = a*(bb* a + a) a*
= a*((bb* + ε) a) a*
= a* b* a a*
= a* b* a* a

3.3.3.3.3. (c)(c)(c)(c)(c)
Traversing the states of the turing machine, it can be seen that for every ‘a’ as the input, it is accepting
3 b’s. For every ‘a’ machine writes ‘X’ on the tape, then take right moves till it reaches ‘b’. For every 3 b’s
it writes symbol Y.
Hence accepting the language L = {am bn 3m = n; m ,n ≥ 0}.

4.4.4.4.4. (a)(a)(a)(a)(a)
When grammar is in CNF i.e., when the production are of the form S → AB, S → a.
Then, length of every derivation is (2n – 1).
When grammar is in GNF i.e., when the production are of the form S → VT∗. Then length of every derivation
is n.
Hence, option (a) is correct.

5.5.5.5.5. (a)(a)(a)(a)(a)
• Finiteness property of a CFG is decidable, which can be decidable with the help of variable dependency

graph.
• Push-down automata need not be always deterministic. In fact power of non-deterministic PDA is

greater than the deterministic.
• Deterministic CFL are closed under complement, hence recursive too.
• DCFL is not closed under union.

6.6.6.6.6. (c)(c)(c)(c)(c)
(a) L1 = {an bn m > n and n > m} = φ

which is regular.
(b) L1 ∪ L2 = {am bnm > n or m < n }

= {am bnm ≠ n} which is CFL.
(c) L1 ∪ L2 = {am bnm < n or m > n}

L1 ∪ L2 = {am bnm ≠ n}
(L1 ∪ L2)

C = {am bnm = n} ∪ (a + b)∗ ba (a + b)∗

© Copyright :www.madeeasy.in

CT-2019 | CS • Theory of Computation 7

(d) L1 ∪ L2 = {am bnm < n or m > n}
= {am bnm ≠ n} which is DCFL and hence unambiguous language

7.7.7.7.7. (b)(b)(b)(b)(b)
The above language represents L2.

8.8.8.8.8. (c)(c)(c)(c)(c)

L = {
nma n ≥ 1, m > n}

⇒ L = {
1ma m ≥ 2} ∪ {

2ma m ≥ 3} ∪

⇒ L = {aii ≥ 2} is a regular language
Its DFA will be

a aA CB
a

Number of states = 3.

9.9.9.9.9. (b)(b)(b)(b)(b)
R = (a* (a* + b* + ab* + ba*)+)

= a* (a + b)*
= (a + b)*

a b,

∴ Number of states in minimal DFA is 1.

10.10.10.10.10. (b)(b)(b)(b)(b)

q0

b

a

b a a b,
q1 q2 q3 q4

a b b

a

5 states are required in minimal DFA.

11.11.11.11.11. (a)(a)(a)(a)(a)
• L1 is regular , since we can create DFA for given language.
• L2 is CFL, since their is a comparison between number of a and number of b in strings i.e., difference

is less than equal to 10.
• L3 is regular, since by making w = ∈ and c = (a+b)* we get language (a+b)* which contain every string

belongs to wcwwr.

12.12.12.12.12. (c)(c)(c)(c)(c)

L = {ambnbkdl(n+k = odd) only if m = l}

If, we check the condition carefully, the condition is actually logical implication.

L = {ambnbkdl(n+k = odd) → m = l}

Either n+k will be odd or it will be even, if (n+k) is odd, then it’s necessary that m should be equal to l, if
(n+k) is even then l can be any number.

L = {am b2n+1 dl and l = m} or {am b2n d l}

= {am b2n+1 dm} ∪ {am b2n d l}

⇒ DCFL ∪ regular = DCFL.

© Copyright :www.madeeasy.in

8 Computer Science & IT

13.13.13.13.13. (a)(a)(a)(a)(a)
The language {0p 12p} is context-free language, hence it is recursive also. Since L(M) ≤p REC, so L(M) also
recursive, now given input (i.e. recursive language) to turing machine and finding it is accept or not is non-
trival property so it is undecidable by Rice′s theorem.

14.14.14.14.14. (d)(d)(d)(d)(d)
By pumping lemma, we can never say that a language is regular or CFL. It can only be used to prove that
a certain language is not regular or not CFL.
Since pumping lemma isn’t satisfied for regular, hence we can say it is not regular, but since the lemma is
satisfied for context-free, we can’t say that the language is CFL.

15.15.15.15.15. (b)(b)(b)(b)(b)

A BC

0 + 10*1 0

1

= (0 + 10*1)* 10*

16.16.16.16.16. (c)(c)(c)(c)(c)
L1 /L2 = bba*baa* / ab*

= bba*baa* / a
= bba*baa*

17.17.17.17.17. (d)(d)(d)(d)(d)
The given grammar G:

E → 0XE2
E → 0X2
X0 → 0X
X2 → 12
X1 → 11

L(G) = {012, 001122, ... }

E → 0X2 ⇒ 012

E → 0XE2 ⇒ 0X0X22 ⇒ 0X0122 ⇒ 00X122 ⇒ 001122

∴ L = {0n 1n 2n n > 0}

18.18.18.18.18. (d)(d)(d)(d)(d)
(R1) = (a*ba*ba*ba*)*

It represents language that contain strings in which number of b’s is multiple of 3 with any number of a.
(R2) = (a*ba*ba*)*

It represents language that contain strings in which number of ‘b’ are in multiple of 2 with any number of a.
So, (R1) ∩ (R2) = (a*ba*ba*ba*ba*ba*ba*)*
Represent string that contain number of b’s in multiple of 6 with any number of a’s.

19.19.19.19.19. (c)(c)(c)(c)(c)
Considering the grammar :

S → SSS a ab
The minimum string that can be obtain from grammar ‘S ’ is string ‘a’ and then string ‘ab’. On applying the
production, S → SSS, which represents L ∪ L3 ∪ L5
Hence, the regular expression will be, (a + ab) ((a + ab) (a + ab))*.

20.20.20.20.20. (d)(d)(d)(d)(d)

© Copyright :www.madeeasy.in

CT-2019 | CS • Theory of Computation 9

1
01X ZY

0

0 1

Minimum string accepted by DFA is “10”, which is generated by only option (d).

21.21.21.21.21. (b)(b)(b)(b)(b)

SSSSS1 1 1 1 1 ::::: Pumping lemma can prove that language is not regular but can’t prove that the language is regular.
Hence this is false.

SSSSS2 2 2 2 2 ::::: We can check regular grammar by following productions V → T * V + T or V → V T * + T .
SSSSS3 3 3 3 3 ::::: Consider ‘L’ to be φ and ‘M’ to {an bnn ≤ 0}

L.M. = φ, which is regular

22.22.22.22.22. (d)(d)(d)(d)(d)
S → AB, S → {an bn c2mn > 0, m ≥ 0}
A → aAbab, A → {an bnn > 0}
B → ccB∈, B → {c2mm ≥ 0}

23.23.23.23.23. (b)(b)(b)(b)(b)

B

0 0
FA for given regular expression

A

1

1

24.24.24.24.24. (b)(b)(b)(b)(b)
∈ → belongs
a → does not belongs . So one length string not belongs to the given RE.

25.25.25.25.25. (b)(b)(b)(b)(b)
(a) {(ab)* (cbn)* n ≥ 1} is regular. R.E. = (a b)* (cbb*)*
(b) {an bm bn m, n ≥ 0} is not regular, since one comparison present between ‘a’ and ‘b’.
(c) {(an b)* (cb)* n ≥ 1} is regular. R.E. = (aa* b)* (cbb*)*
(d) {(ab)* (cb)*} is regular, since there is no bound on any variable.

26.26.26.26.26. (a)(a)(a)(a)(a)
• Complement of L(D) is:

q0 q1 q2

0,11 1

0 0

Which represent all strings in consecutive 0’s, so given DFA is no consecutive 0’s.

27.27.27.27.27. (a)(a)(a)(a)(a)
In given PDA at q1 state 0 is push after that every 0 and 1 ignore (skip) at state q1. At q1 for last 1, 0 is
popped and reach to q2 state. At last from q2 state we go for final state. So the language accepted by
given PDA is 0(0+1)+ 1 which is regular but infinite.

28.28.28.28.28. (a)(a)(a)(a)(a)
L3 = L(G1) ∩ L(G2)

L(G1) and L(G2) are CFL, infact L2 is regular language having regular language 0(10)*.
L(G1) is language contain equal number of 0 and 1.

© Copyright :www.madeeasy.in

10 Computer Science & IT

So, L3 = L(G1) ∩ L(G2)
= CFL ∩ Reg
= CFL

L4 = L(G1) ⋅ L(G2)
= CFL ⋅ (Reg)*
= CFL

So, both L3 and L4 are CFL.

29.29.29.29.29. (c)(c)(c)(c)(c)

a

b

b

Note is that the NFA has no choice, only dead configuration and hence can be easily converted DFA (put
dead configuration trap state).
Minimized DFA for the language R:

a
a

a b,

q0 q1 q2

b

b

[q0] = (ab + b)*
[q1] = (ab + b)*a
[q2] = (ab + b)* aa(a + b)*

∴ Three equivalence classes are present.

30.30.30.30.30. (b)(b)(b)(b)(b)
The R.E. is (a +b)* (aaa + aab) which is nothing but set of string ending with aaa or aab. For which we can
directly design minmal DFA as follow:

∈ a aaa a aaa

aab

a b,

b

The fill missing arrows as follow:

∈ aa

a
b

b aab

a a

b
b

a

aab aaa

