- C	LAS	01_IG_CE_A+	C_300623										
India's Best Institute for IES, GATE & PSUs													
Defini Bropai Hyderabad Jaipur Pune Brubaneswar Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612													
DESIGN OF STEEL STRUCTURES													
CIVIL ENGINEERING													
			Da	te of Te	st:3	0/06/20	23						
ANSWER KEY													
1.	(c)	7.	(b)	13.	(c)	19.	(d)	25.	(d)				
2.	(c)	8.	(c)	14.	(d)	20.	(c)	26.	(c)				
3.	(c)	9.	(b)	15.	(c)	21.	(b)	27.	(d)				
4.	(c)	10.	(b)	16.	(b)	22.	(c)	28.	(d)				
5.	(a)	11.	(a)	17.	(c)	23.	(c)	29.	(c)				
6.	(d)	12.	(d)	18.	(d)	24.	(b)	30.	(c)				

CT-2023-24 CE

Design of Steel Structures

DETAILED EXPLANATIONS

1. (c)

Shape factors of cross-sections are as follows:

- (i) Rectangle 1.5
- (ii) I-section 1.14
- (iii) Diamond 2
- (iv) Triangle 2.34
- (v) Circle 1.7
- 2. (c)

In case of plastic moment $M_{p'}$ neutral axis passes through the point which divides the given section into two equal areas. Thus neutral axis must lie between yy and zz.

3. (c)

Angle of lacing with built be column should be $40^{\circ} < \theta < 70^{\circ}$.

 $I_{yy} \ge I_{xx}$

4. (c)

For efficient minimum spacing 'S' between the channels,

Now

$$I_{yy} \ge I_{xx}$$

$$I_{xx} = 2 \times 10000 \times 10^{4} = 20000 \times 10^{4} \text{ mm}^{4}$$

$$I_{yy} = 2 \left[434 \times 10^{4} + \left(24.4 + \frac{S}{2} \right)^{2} \times 5366 \right]$$

Now,

$$\Rightarrow 2\left[434 \times 10^4 + \left(24.4 + \frac{S}{2}\right)^2 \times 5366\right] \ge 20000 \times 10^4$$
$$S \ge 218.20 \text{ mm}$$

5. (a)

Bearing strength,
$$V_{dpb} = \frac{2.5k_b d \cdot t \cdot f_u}{\gamma_m b}$$

$$k_{b} = \min \operatorname{of} \left[\frac{e}{3d_{0}}, \frac{p}{3d_{0}} - 0.25, \frac{f_{ub}}{f_{u}}, 1 \right] \qquad [d_{0} = 22 \text{ mm for } 20 \text{ mm bolts}]$$
$$= \min \operatorname{of} \left[\frac{40}{3 \times 22}, \frac{60}{3 \times 22} - 0.25, \frac{400}{410}, 1 \right] = 0.606$$
Bearing strength =
$$\frac{2.5 \times 0.606 \times 20 \times 20 \times 410}{1.25} \text{ N} = 198.768 \times 10^{3} \text{ N} \simeq 198.77 \text{ kN}$$

...

8. (c)

Bearing stiffeners are used to prevent local buckling and column splice has no role to play in shear capacity.

11. (a)

Weight of galvanized iron sheets = $140 \times 2 = 280 \text{ N/m}$ Dead load of purlins =100 N/m∴ Total dead load = 280 + 100 = 380 N/mThis dead load acts vertically downward. The component of dead load normal to roof = $380 \cos 30^\circ = 329.1 \text{ N/m}$ Wind pressure = $0.6 V_z^2 = 0.6 \times 45^2 = 1215 \text{ N/m}^2$ Wind load acts normal to the roof. Wind load = $1215 \times 2 = 2430 \text{ N/m}$ ∴ Total load on purlin normal to roof = 329.1 + 2430 = 2759.1 N/m∴ Total factored load = 1.5×2759.1

=
$$4138.65 \text{ N/m} \approx 4.14 \text{ kN/m}$$

13. (c)

Transverse shear,
$$V = \frac{2.5}{100} \times 800 = 20 \text{ kN}$$

Longitudinal shear, $V_l = \frac{VC}{NS}$

Given: *C* = 1300 mm

N = Number of parallel planes of batten = 2 S = Minimum transverse distance between the centroid of bolt group $\Rightarrow S = 190 + 50 \times 2 = 290 \text{ mm}$

$$V_l = \frac{20 \times 1300}{2 \times 290} = 44.8 \,\mathrm{kN}$$

www.madeeasy.in

...

15. (c)

16. (b)

Total weld length = $(120 \times 2) + 40 = 280 \text{ mm}$ Strength of weld per mm length = $0.7 \times 8 \times 120 = 672$ N/mm

Maximum load taken by joint = $\frac{672 \times 280}{1000}$ = 188.16 kN

17. (c)

Throat thickness of weld,

 $t_t = 0.7 \text{ s}$ = 0.7 × 8 = 5.6 mm $f_{wd} = \frac{f_u}{\sqrt{3}\gamma_{mw}} = \frac{410}{\sqrt{3} \times 1.25} = 189.4 \text{ N/mm}^2$ Design stress in weld,

Design strength of weld per mm length of cylinder

$$= 2 \times 189.4 \times 1 \times 5.6$$

= 2121.28 N/mm

Let

 P_d = Design fluid pressure inside the cylinder Design hoop tension/pressure per mm length of cylinder

$$\Rightarrow \qquad P_d \frac{D}{2} = \frac{P_d \times 500}{2} = 2121.28$$
$$\Rightarrow \qquad P_d = 8.48 \text{ N/mm}^2$$

18. (d)

Given, Fe410, $f_y = 250 \text{ N/mm}^2$; $E = 2 \times 10^5 \text{ N/mm}^2$; $r_{\min} = 52.2 \text{ mm}$; L = 3.5 mSince, column is restrained in direction and position at both ends. Effective length of column, ($L_{\rm eff}$) = 0.65 L

$$L_{\rm eff} = 0.65 \times 3.5 = 2.275 \,\mathrm{m}$$

Non-dimensional slenderness ratio, (λ)

$$\lambda = \sqrt{\frac{f_y}{f_{cc}}} = \sqrt{\frac{f_y}{\left(\frac{\pi^2 E}{\lambda^2}\right)}} = \sqrt{\frac{\frac{250}{\pi^2 \times 2 \times 10^5}}{\left(\frac{2.275 \times 10^3}{52.2}\right)^2}} = 0.49$$

19. (d)

Area of connected leg, $A_1 = \left(100 - \frac{10}{2}\right) \times 10 = 950 \text{ mm}^2$

Area of outstanding leg, $A_2 = \left(75 - \frac{10}{2}\right) \times 10 = 700 \text{ mm}^2$

$$k = \frac{3A_1}{3A_1 + A_2} = \frac{3 \times 950}{3 \times 950 + 700} = 0.803$$

Net area,
$$A_{\text{net}} = A_1 + kA_2 = 950 + (0.803 \times 700)$$

= 1511.97 \approx 1512 mm²

20. (c)

...

If

$$V \le 0.6 V_d$$
 (Low shear case)
 $V > 0.6 V_d$ (High shear case)
 $V \le 0.6 V_d$

 \Rightarrow Web will be fully effective and the entire cross-section will resist the bending moment V > 0.6 V_d

 \Rightarrow Web area will be ineffective and only the flanges will resist the moment

21. (b)

Design shear strength,
$$V_d = \frac{f_y}{\sqrt{3}} \times \frac{1}{\gamma_{mo}} \times h \times t_w$$

 $h = 300 \text{ mm}$
 $t_w = 7.5 \text{ mm}$
For Fe410, $f_y = 250 \text{ N/mm}^2$
So, $V_d = \frac{250}{\sqrt{3}} \times \frac{1}{1.1} \times 300 \times 7.5 = 295.24 \text{ kN}$

22. (c)

If the shear force to be transferred in the beam is large that seat angle may fail, to strengthen it, a stiffer angle may be provided. Such connections are known as stiffened seated connection.

23. (c)

Bolt value of each bolt = 45.27 kN Now force in extreme bolt is computed as below.

India's Best Institute for IES, GATE & PSUe

CT-2023-24 CE • Design of Steel Structures 13

Direct shear force, $F_1 = \frac{P}{n} = \frac{P}{5} = 0.2P$

Now, centre of gravity of bolted connection is at the centre of central bolt

For four extreme bolts, $r = \sqrt{80^2 + 60^2} = 100 \text{ mm}$ For central bolt, r = 0 \therefore $\Sigma r^2 = 4 \times (100)^2 = 4 \times 10^4 \text{ mm}^2$ For extreme bolt, r = 100 mm

:. Force due to bending moment in extreme bolt

$$F_2 = \frac{P \times e \times r}{\Sigma r^2} = \frac{P \times 250 \times 100}{4 \times 10^4} = 0.625 P$$

Angle between the two forces F_1 and F_2 is θ which is calculated as:

$$\cos\theta = \frac{60}{r} = \frac{60}{100} = 0.6$$

:. Total force on extreme bolt

$$= \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$$

= $\sqrt{(0.2P)^2 + (0.625P)^2 + 2 \times 0.2P + 0.625P \times 0.6}$
= 0.76199 P

Equating it to the bolt value of bolt,

We get,	0.76199 P	=	45.27	kN
\Rightarrow	Р	=	59.41	kN

24. (b)

Bearing strength of concrete

 $= 0.60 f_{ck} = 0.60 \times 20 = 12 \text{ N/mm}^2$ For factored load, $P_u = 1000 \text{ kN}$

Bearing pressure, $w = \frac{1000 \times 10^3}{400 \times 300} = 8.33 \text{ N/mm}^2 < 12 \text{ N/mm}^2$

Now, longer projection, $a = \frac{400 - 300}{2} = 50 \text{ mm}$

 $b = \frac{300 - 250}{2} = 25 \text{ mm}$

So, minimum thickness of base plate required is

© Copyright: MADE EASY

Force in any bolt due to direct load

$$=\frac{150}{6}=25$$
 kN

Option (a) and (b) is correct. Force in bolt due to twisting moment is given by:

$$= \frac{(Pe)r_i}{\Sigma r_i^2}$$

$$r_i = 10 \text{ cm (for bolt R)}$$

$$r_i = \sqrt{10^2 + 15^2} \text{ cm (for bolt Q)}$$

$$\Sigma r_i^2 = 4(10^2 + 15^2) + 2(10)^2 = 1500 \text{ cm}^2$$

$$T = (Pe) = 150 \times 40 = 6000 \text{ kN-cm}$$

$$(F_T)_R = \frac{6000 \times 10}{1500} = 40 \text{ kN (Option 'C' is correct)}$$

$$(F_T)_Q = \frac{6000 \times \sqrt{10^2 + 15^2}}{1500} = 72 \text{ kN (Option 'd' is wrong)}$$

26. (c)

$$\lambda = \frac{L_{eff}}{r_{\min}};$$
 where $r_{\min} = \sqrt{\frac{I_{\min}}{A}}$

 $L_{\rm eff}$ depends on length of member and support condition $r_{\rm min}$ depends on sectional configuration.

P = 350 kNSize of weld, S = 10 mm e = 100 mm $t_t = \text{Effective throat thickness}$ $= 0.7 \times 10 = 7 \text{ mm}$

Shear stress in the weld

India's Best Institute for IES, GATE & PSUe

$$q = \frac{P}{2t_t d} = \frac{350 \times 10^3}{2 \times 7 \times 500} = 50 \text{ N/mm}^2$$

Normal stress due to bending

$$\delta_{a} = \frac{M}{I}y$$
$$= \frac{Pe}{I}y = \frac{350 \times 10^{3} \times 100}{2 \times \frac{7 \times (500)^{3}}{12}} \times 250 = 60 \text{ N/mm}^{2}$$

.:. Equivalent stress on the weld

$$f_e = \sqrt{(f_a)^2 + 3q^2}$$

= $\sqrt{(60)^2 + 3 \times (50)^2}$
= 105.35 N/mm²

28. (d)

As per IS 800:2007, slenderness ratio of tension members is restricted to 400.

30. (c)

This limit is imposed to prevent buckling of component member between the lacings.

###