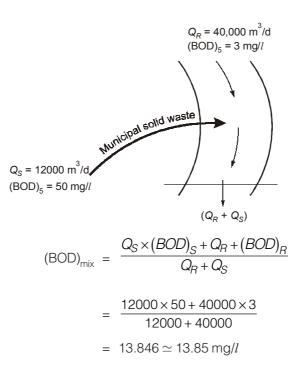
CLASS TEST									
						•.: 01 PT_CE_ vironmental E			
							g	9	
MADE EASY									
India's Best Institute for IES, GATE & PSUs Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
			_	_		_			
	(CLA	S	5 T	ES	ST			
		201	9	-20)2(C			
		_	-	_	-				
		CIVIL	ΕN	GINE	ERIN	1G			
		Date of	Tes	t:30/08	8/201	9			
ANSWER KEY	>	Environr	nont	al Engine	erina				
1. (c)	7.	(b)		(d)	19.	(c)	25	(b)	
2. (b)	8.	(b)	14.		20.		26.	(a)	
3. (c)	9.	(d)	15.	(d)	21.	(a)	27.	(a)	
4. (d)	10.	(b)	16.	(a)	22.	(a)	28.	(a)	
5. (b)	11.	(b)	17.	(d)	23.	(b)	29.	(a)	
6. (c)	12.	(a)	18.	(b)	24.	(a)	30.	(b)	

DETAILED EXPLANATIONS

2. (b)

Total hardness


TH(in mg/l as CaCO₃) = (milli. eq. of Ca²⁺) × eq. wt. of CaCO₃ + (milli. eq. of Mg²⁺) × eq. wt of CaCO₃ = $40 \times 50 + 20 \times 50 = 3000$ \therefore TH > Alkalinity \therefore CH = Alkalinity = 2250 mg/l as CaCO₃ \therefore NCH = 3000 - 2250 = 750 mg/l as CaCO₃ (b)

$$V_1 (100 - P_1) = V_2 (100 - P_2)$$
$$V_1 (100 - 98) = V_2 (100 - 90)$$
$$V_2 = 0.2 V_1$$

:. 80% decrease.

8. (b)

5.

9. (d)

Sanitary land filling is a site for disposal of waste material by burial. It is process of dumping of solid waste in a scientifically designed, dried, area by spreading waste in form of thin layers. It is economical, simple and efficient measure of natural decomposition of wastes.

11. (b)

 Y_1 (i.e. BOD for one day) = 110 mg/lit at 30°C

$$k_D = 0.1 \text{ d}^{-1} \text{ at } 20^{\circ}\text{C}$$

$$k_{D(T=30^{\circ}\text{C})} = k_{D(T=30^{\circ}\text{C})} (1.047)^{T-20}$$

$$= 0.1 \times (1.047)^{30-20} = 0.158 \text{ d}^{-1}$$

$$l_0(1 - 10^{-0.158 \times 1}) = 110$$

...

$$l_0$$
(ultimate BOD) = $\frac{110}{1-10^{-0.158}}$ = 360.68 mg/lit

Now, 5 day BOD at 20°C

$$Y_5 = l_0(1 - 10^{-k_D t})$$

= 360.68 (1 - 10^{-0.1×5}) = 246.62 mg/lit

12. (a)

Given,

Population = 20,000BOD₅ of persons = 70 gm per capita BOD₅ of industry = 450 mg/*l* Discharge of industries = 50,000 *l*/d

Total BOD₅ of combined sewage

=
$$(20,000 \times 70) + (450 \times 50,0000 \times 10^{-3}) = 1422500 \text{ gm/day}$$

$$\therefore \qquad \text{Population equivalent} = \frac{\text{Total BOD}_5}{80 \text{ gm/day/person}} = \frac{1422500}{80} = 17781.25$$

13. (d)

- Fluorides are removed with aluminum oxide.
- Hexavalent chromium can be removed by reduction and followed by precipitation.
- Iron and manganese can be removed by aeration followed by coagulations, sedimentation and filtration.
- Toxic organics can be removed by activated carbon treatment.

14. (a)

Given, Drainage discharge = 1.3 m^3 /sec Area of town = 20 ha Critical rainfall intensity, $p_c = 6 \text{ cm/hr}$

Critical rainfall intensity, From, Retinol formula

$$Q_{p} = \frac{1}{36} k_{eq} \cdot p_{c} A \qquad (A \text{ in ha}, P_{c} \text{ in cm/hr})$$

$$1.3 = \frac{1}{36} \left(\frac{k_{1}A_{1} + k_{2}A_{2} + k_{3}A_{3}}{A_{1} + A_{2} + A_{3}} \right) \times 6 \times 20$$

$$1.3 = \frac{1}{36} \left(\frac{\left(0.8 \times \frac{x}{100} + 0.2 \times \frac{40}{100} + 0.15 \times \frac{60 - x}{100} \right)}{\left(\frac{x}{100} + \frac{40}{100} + \frac{60 - x}{100} \right) A} \right) \times 6 \times 20$$

$$x = 33.846 \simeq 34\%$$

15. (d)

$$\begin{array}{rcl} \text{BOD loading rate} &=& 250 \, \text{kg/ha/day} \\ \text{Waste water flow} & Q &=& 1 \, \text{MLD with BOD} = 250 \, \text{mg/lit} \\ \end{array}$$

Surface area of pond =
$$\frac{\text{BOD applied}}{\text{BOD loading rate}}$$

$$\therefore \qquad \text{Surface area of pond} = \frac{(1 \times 250) \text{ kg/day}}{250 \text{ kg/ha/day}} = 1 \text{ ha} \qquad (\text{MLD} \times \text{mg/}l = \text{kg/day})$$

$$\therefore \qquad \text{Volume of pond}(V) = \text{Surface area} \times \text{depth} = 1 \text{ ha} \times 1 = 10^4 \times 1 = 10^4 \text{ m}^3$$

$$\therefore \qquad \text{Detention time}(D_t) = \frac{V}{Q} = \frac{10^4}{\left(\frac{1 \times 10^6}{10^3}\right)} = 10 \text{ days}$$

16. (a)

Concentration of SO₂ (in 1 μ g/m³) = 42 μ g/m³ at STP

$$\mu g/m^{3} = \left(\frac{ppm \times mol.wt \times 10^{3}}{volume at T^{\circ}C \text{ in lit/mol}}\right)$$

$$V_{2} = V_{1}\left(\frac{273 + 25}{273}\right) = 22.4\left(\frac{298}{273}\right) = 24.45 \text{ lit/mol}$$

$$42 = \frac{ppm \times 64 \times 10^{3}}{24.45}$$

$$SO_{2}(\text{in ppm}) = 0.016 \text{ ppm}$$

17. (d)

Given, Free chlorine residual = 0.2 mg/l
i.e. [HOCI] + [OCI⁻] = 0.2 mg/l ...(i)
HOCI
$$\longrightarrow$$
 H⁺ + OCI⁻
 $k = 2.7 \times 10^{-8}$
 $pH = 7.2$
 \Rightarrow [H⁺] = 10^{-7.2}
 \therefore $k = \frac{[H^+][OCI^-]}{[HOCI]}$
 \therefore $\frac{[OCI^-]}{[HOCI]} = \frac{2.7 \times 10^{-8}}{10^{-7.2}} = 0.4279$
 \therefore From equation (i)
 $\begin{bmatrix}OCI^-] + \frac{[OCI^-]}{0.4279} = 0.2$
 $[OCI^-] = 0.06 mg/l$
 \therefore [HOCI] = 0.14 mg/l
18. (b)
Given, Size of particle, $d = 0.025 \text{ mm}$
 $G_S = 2.65$

Given, Size of particle,	u = 0.02511111
	$G_{S} = 2.65$
Dynamic viscosity of water,	$\mu = 10^{-3} \text{N-s/m}^2$
Surface overflow rate	SOR = 0.065 cm/sec

%age of suspended particles likely to be settled in sedimentation tank i.e. efficiency of sedimentation tank

$$\eta = \frac{V_s}{V_0} \times 100 = \frac{0.000562}{0.065 \times 10^{-2}} \times 100 = 86.46\% \simeq 86\%$$

19. (c)

- 1. Circular sewer section are mostly used for separate sewage system. But the advantage of circular sewer is obtained only when the section runs atleast half full.
- 2. If a circular sewer is used for combined system. It will be effective only during maximum rain water flow, but during dry weather flow, velocity generated would be very less.

20. (b)

Nitrogen in any soluble from i.e. NH_3 , NH_4^+ , NO_2^- and NO_3^- excluding N_2 gas is a nutrient and may need to be removed from waste water to help control algal growth in the receiving body.

21. (a)

As per Chick's law,

$$\frac{N_t}{N_0} = e^{-kt}$$

98% killing of bacteria; $k = 3 \times 10^{-2} \text{ s}^{-1}$

i.e. $\frac{N_t}{N_0} = 0.02$ $0.02 = e^{-3 \times 10^{-2} \times t}$ $t = 130.4 \sec \simeq 2.17 \text{ min}$

22. (a)

Total solids, $\frac{0.952}{1000} \times 10^6 = 952 \text{ ppm}$

Fixed solium, $\frac{0.516}{1000} \times 10^6 = 516 \text{ ppm}$

Volatile solids = $S_V = S_T - S_F = 952 - 156$ = 436 ppm

$$V_{f} = 1.22 \text{ cm/sec}$$

$$G_{S} = 2.65$$

$$v = 0.01 \text{ cm}^{2}/\text{sec}$$

$$H = 3.5 \text{ m}$$

$$U_{t} = \frac{l}{V_{f}} = \frac{H}{V_{0}}$$

$$\frac{65}{1.22} = \frac{3.5}{V_{0}}$$

$$V_0 = \frac{3.5 \times 1.22}{65} = 0.065 \text{ cm/sec}$$

For 100% removal (let d(in cm) be the size of particle)

$$V_{s} = V_{0}$$

$$\frac{g}{18}(G_{s} - 1)\frac{d^{2}}{v} = V_{0}$$

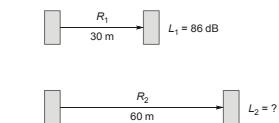
$$\frac{981}{18}(2.65 - 1)\frac{d^{2}}{0.01} = 0.065$$

$$d = 0.0027 \text{ cm}$$

$$d = 0.027 \text{ mm}$$

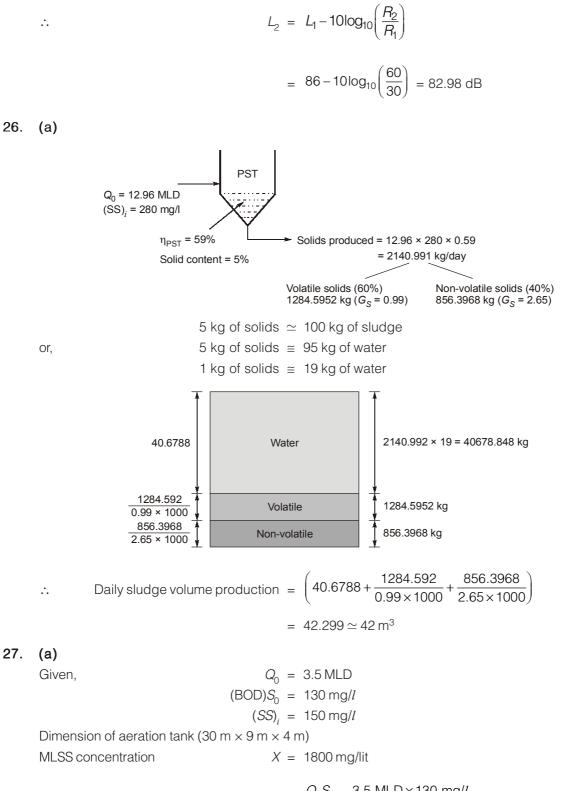
24. (a)

Year	Population	Increase in population	%age inc.
1971	8,00,000	_	
1981	9,50,000	150000	$\frac{150000}{800000} \times 100 = 18.75 (r_1)$
1991	11,20,000	170000	$\frac{170000}{950000} \times 100 = 17.89 (r_2)$
2001	13,45,000	225000	$\frac{225000}{1120000} \times 100 = 20.09 (r_3)$


.: Average %age increase,

$$r = (r_1 r_2 r_3)^{1/3} = (18.75 \times 17.89 \times 20.09)^{1/3}$$

= 18.89%


Population at the end of 2031 i.e. after 3-decades. As by geometrical increase method, we know that

$$P_n = P_0 \left(1 + \frac{r}{100} \right)^n$$
$$P_2 = 13,45,000 \left(1 + \frac{18.89}{100} \right)^3 = 2260259$$

25. (b)

Since linear source,

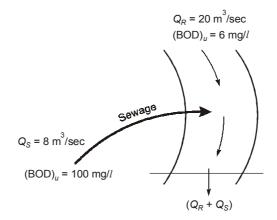
 $\therefore \qquad \text{BOD loading rate} = \frac{Q_0 S_0}{V} = \frac{3.5 \text{ MLD} \times 130 \text{ mg/}l}{\left(\frac{30 \times 9 \times 4}{10^4}\right) \text{ha-m}}$ = 4212.96 kg/ha-m/day

 $(MLD \times mg/l = kg/day)$

12 Civil Engineering

29. (a)

Given, η (efficiency of high rate trickling filter) = 82%Volume of filter, $V = 1365 \text{ m}^3 = 0.1365 \text{ ha-m}$ Recirculation ratio,R = 1.5


$$\eta = \frac{100}{1+0.0044\sqrt{\frac{w}{VF}}}$$

$$F = \frac{1+R}{(1+0.1R)^2} = \frac{1+1.5}{(1+0.1\times1.5)^2} = 1.89$$

$$w = \text{BOD}_5 \text{ (in kg/day) entering the filter}$$

w = 642.105 kg/day

30. (b)

Given, Cross section area of river = 80 m^2

: Velocity of river after mixing

$$V = \frac{(20+8)}{80} = 0.35 \text{ m/sec}$$

$$(BOD)_{u, \text{mix}} = \frac{Q_S(BOD)_{uS} + (Q_R) \times (BOD)_{uR}}{Q_S + Q_R}$$

$$(BOD)_{u, \text{ mix}} = \frac{8 \times 100 + 20 \times 6}{8 + 20} = 32.86 \text{ mg/}l$$

Also, given BOD remaining in the river = 5 mg/l

$$l_t = l_0 e^{-kt}$$

 $5 = 32.86 e^{-0.252 \times t}$
 $t = 7.47 days$

:. Distance after which BOD remaining (= 5 mg/l)

$$S = Vt$$

= $\frac{0.35 \times 7.47 \times 86400}{1000}$ km = 225.94 km