- C	LAS	s te	ST -			S.N	o. : 01	SK_EE_ABC	CD_24623	
TADE EASS India's Best Institute for IES, GATE & PSUs										
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata										
	EL	EC	TR	ICA	L	MA	СН	INE	S	
	-	EL	ECT Dat	RICAL	_ EN st:24	IGINE ./06/20	ERIN 23	NG		
AN	SWER I	EL Key >	ECT Dat	RICAI	_ EN	IGINE ./06/20	ERIN 23	NG		
AN 3 1.	SWER I	EL KEY > 7.	ECT Dat	RICAL	_ EN st:24	IGINE /06/20	ERIN 23	NG 25.	(d)	
AN 1. 2.	SWER (a) (b)	EL (EY) 7. 8.	ECT Dat (c) (a)	RICAL te of Te: 13. 14.	_ EN st:24	IGINE /06/203 19. 20.	ERIN 23 (a) (b)	NG 25. 26.	(d) (d)	
AN 1. 2. 3.	SWER (a) (b) (d)	EL (KEY) 7. 8. 9.	ECT Dat (c) (a) (b)	RICAI te of Te: 13. 14. 15.	_ EN st:24 (b) (b) (b)	IGINE /06/202 19. 20. 21.	ERIN 23 (a) (b) (d)	NG 25. 26. 27.	(d) (d) (a)	
AN 1. 2. 3. 4.	SWER (a) (b) (d) (c)	EL (EY) 7. 8. 9. 10.	ECT Dat (c) (a) (b) (d)	RICAI te of Te: 13. 14. 15. 16.	_ EN st:24 (b) (b) (b) (b)	IGINE 2/06/202 19. 20. 21. 22.	ERIN 23 (a) (b) (d) (d)	NG 25. 26. 27. 28.	(d) (d) (a) (c)	
AN 1. 2. 3. 4. 5.	SWER (a) (b) (d) (c) (b)	EL 7. 8. 9. 10. 11.	ECT Dat (c) (a) (b) (d) (b)	RICAI te of Tes 13. 14. 15. 16. 17.	_ EN st:24 (b) (b) (b) (b) (b)	IGINE /06/203 19. 20. 21. 22. 23.	ERIN 23 (a) (b) (d) (d) (d) (b)	NG 25. 26. 27. 28. 29.	(d) (d) (a) (c) (c)	

DETAILED EXPLANATIONS

1. (a)

We know for per unit loading,

$$\left(\overrightarrow{S_{f \text{ p.u.}}}\right) \propto \frac{1}{(Z_{f\Omega})(S_{f \text{ rated}})}$$

for first transformer produced $(Z_{j \Omega}) \times (S_{j \text{ rated}})$ is lowest i.e. $(Z_{j \Omega}) \times (S_{j \text{ rated}}) = 1000 \times 2 = 2000$ So, it will reach full load first.

2. (b)

When *h.v.* side is exicted,

core loss =
$$VI \cos \phi$$

= 1000 × 3 × 0.75 = 2250 W

When *l.v.* side is excited,

core loss =
$$VI \cos \phi = 2250 \text{ W}$$

$$I = \frac{2250}{V \times \cos\phi} = \frac{2250}{400 \times 0.75} = 7.5 \text{ A}$$

Power factor is same for a transformer.

3. (d)

We know that,

or,

$$\frac{\text{Starting torque}}{\text{Full load torque}} = \frac{T_{st}}{T_{fl}} = x^2 \left(\frac{I_{sc}}{I_{fl}}\right)^2 \times s_{fl}$$

$$0.4 = x^2 \times (5)^2 \times 0.035$$

or,

$$x^{2} = \frac{0.4}{25 \times 0.035}$$
$$x = \sqrt{\frac{0.4}{25 \times 0.035}} = 0.676$$

 \therefore The percentage of tapping is 67.6%.

4. (c)

kVA shared $\propto \frac{1}{\text{leakage impedance}}$

...

$$N_s$$
 (stator field) = $\frac{120 \times 50}{4} = 1500$ rpm;
 N_s (rotor field) = $\frac{120 \times 30}{4} = 900$ rpm
 $N_r = 1500 \pm 900 = 2400$ rpm, 600 rpm

© Copyright: **MADE EASY**

6. (a)

Primary is star connected and secondary is delta connected.

$$(V_{L})_{\text{primary}} = 11000 \text{ V}$$

$$(V_{\text{ph}})_{\text{primary}} = \frac{11000}{\sqrt{3}}$$

$$\frac{(V_{\text{ph}})_{\text{sec}}}{(V_{\text{ph}})_{\text{prim}}} = \frac{1}{5}$$

$$\therefore \qquad \text{Turns ratio} = \left(\frac{\text{High voltage}}{\text{Low voltage}}\right)_{\text{phase}}$$

$$\therefore \qquad (V_{\text{ph}})_{\text{sec}} = \frac{11000}{5\sqrt{3}} \text{ V}$$

$$(V_{\text{ph}})_{\Delta} = (V_{L})_{\Delta}$$

$$\text{Output kVA} = \sqrt{3} V_{L} I_{L}$$

$$= \sqrt{3} \times \frac{11000}{5\sqrt{3}} \times 423 = 930.6 \text{ kVA}$$

7. (c)

Transformer-1,

750 kVA, $Z_1 = 0.018 + j0.09$ p.u. (on 750 kVA base) Transformer-2, 250 kVA, $Z_2 = 0.022 + j0.10$ p.u. (on 250 kVA base)

$$Z_{2 \text{ new}} = (0.022 + j0.10) \times \frac{750}{250}$$

= (0.066 + j0.30) p.u (on 750 kVA base)

Load shared by transformer 2 is,

$$\vec{S}_{2}^{*} = \left(\frac{\vec{Z}_{1}}{\vec{Z}_{1} + \vec{Z}_{2}}\right) \vec{S}_{L}^{*}$$
$$= \frac{0.018 + j0.09}{0.084 + j0.39} \times (1000 \angle -\cos^{-1}(0.8))$$
$$= 230.06 \angle -36.02^{\circ}$$

Load shared by second transformer,

$$\vec{S}_2 = 230.06 \angle 36.02 \text{ kVA}$$

8. (a)

For same air gap flux, $\frac{V}{f}$ ratio should be constant Flux, $\phi = \frac{V}{f} = \text{constant}$

$$\frac{V_2}{f_2} = \frac{V_1}{f_1}$$
$$V_2 = \frac{400}{50} \times 30 = 240 \text{ V}$$

9

Synchronous speed of motor for 50 Hz source

$$N_s = \frac{120 \times 50}{4} = 1500 \text{ rpm}$$

Slip, $s_1 = \frac{1500 - 1440}{1500} = 0.04$

At small value of slip, the electromagnetic torque is given by

$$T = \frac{3}{\omega_s} \times \frac{V^2 s}{r_2}$$

$$T \propto \frac{V^2}{f} \cdot s$$
For same torque, $\frac{V_2^2}{f_2} \cdot s_2 = \frac{V_1^2}{f_1} \cdot s_1$

$$\frac{(240)^2}{30} s_2 = \frac{400^2}{50} \times 0.04$$
Slip, $s_2 = 0.067$
Synchronous speed of motor at 30 Hz source,
$$N = \frac{120 \times 30}{50} = 900 \text{ r}$$

$$N_{s2} = \frac{1}{4} = 900 \text{ rpm}$$

Rotor speed, $N = (1 - 0.067) \times 900$
 $N = 840 \text{ rpm}$

9. (b)

Point *R* is corresponding to maximum voltage regulation. For maximum voltage regulation load power factor is equal to

$$\cos \phi = \frac{R}{Z}$$

$$Z = \sqrt{R^2 + X^2} = \sqrt{0.05^2 + 0.5^2}$$
Power factor,
$$\cos \phi = 0.0995 \text{ lagging}$$

10. (d)

Synchronous speed,
$$\omega_s = \frac{2}{P} \times 2\pi f = \frac{4 \times \pi \times 50}{6} = 104.72 \text{ rad/sec}$$

Starting torque, $T_{\text{starting}} = \frac{3}{\omega_s} \cdot \frac{E_2^2 r_2'}{(r_2')^2 + (x_2')^2}$
 $40 = \frac{3}{104.72} \times \frac{E_2^2 \times 0.32}{(0.32)^2 + (3.2)^2}$

Rotor voltage at standstill,

$$E_2 = 212.43 \text{ V}$$

11. (b)

For first case;	$\frac{V_1}{f_1} =$	$\frac{400}{50} = 8$	
For second case;	$\frac{V_2}{f_2} =$	$\frac{200}{25} = 8$	
Since,	$\frac{V_1}{f_1} =$	$\frac{V_2}{f_2} = 8$; the flux density B_m remains constant	
Now, Hysteresis loss, and Eddy current loss Then, Iron loss	$P_{h} =$, $P_{e} =$, $P_{i} =$	$K_1 f$ $K_2 f^2$ $K_1 f + K_2 f^2$	
or,	$\frac{\underline{P_i}}{f} =$	$K_1 + K_2 f$	(i)
Now, from I st case:			
<u>32</u> 5	$\frac{200}{50} =$	$K_1 + K_2 \times 50$	(ii)
From II nd case:			
$\frac{10}{2}$	$\frac{000}{25}$ =	$K_1 + 25 K_2$	(iii)
From (ii) and (iii), we	get		
	$K_1 =$	16	
and	$K_2 =$	$\frac{24}{25}$	
Hysteresis loss,	, $P_h =$	$16 \times 50 = 800 \text{ W}$	
and, eddy current loss	$s, P_e =$	$\frac{24}{25} \times 2500 = 2400 \text{ W}$	
(d)			
	$T_s =$	1.5 <i>T_f</i>	
T_{1}	max. =	2 T _f	
For maximum torque,	$s_{mT} =$	$\frac{r_2}{x_2}$	
$\frac{T}{T_{m}}$	$\frac{\Gamma_s}{1} =$	$\frac{1.5T_f}{2T_f} = \frac{2s_{mT}}{1 + s_{mT}^2}$	
i.e. $1.5s_{mT}^2 - 4s_{mT} +$	1.5 =	0	
*	$s_{mT} =$	0.45	
(b)			
kVA supplied by Vee of	connect	tion transformer,	
•	r	$\frac{1}{2} \times S = \frac{3000}{2} = 1722 1 M A$	
	$v_{Vee} =$	$\frac{1}{\sqrt{2}} \times S_{3-\phi} = \frac{1}{\sqrt{2}} = \frac{1}{32} \text{ KVA}$	

p.f. angle of transformer-1 = $\phi + 30^\circ = \cos^{-1}(0.95) + 30^\circ = 48.19^\circ$ p.f. angle of transformer-2 = $\phi - 30^\circ = \cos^{-1}(0.95) - 30^\circ = -11.8^\circ$

12.

13.

 $\cos \phi_2 = \cos 11.8^\circ = 0.98$ leading $\vec{S}_1 = 1732 \angle 48.19^\circ \text{ kVA}$ $\vec{S}_2 = 1732 \angle -11.8^\circ \text{ kVA}$

14. (b)

We know approximate voltage regulation formula,

$$V.R. = Z_{p.u.} \cos(\theta_{eq} - \phi)$$
For maximum voltage regulation,

$$\theta_{eq} - \phi = 0^{\circ}$$

$$V.R. = Z_{p.u.} \cos 0^{\circ}$$

$$= Z_{p.u.}$$
For minimum voltage regulation,

$$\phi = -90^{\circ}$$

$$V.R. = Z_{p.u.} \cos(90^{\circ} + \theta_{eq})$$

$$= -Z_{p.u.} \sin(\theta_{eq})$$

$$= -X_{p.u.}$$
(b)

15. (b)

At starting slip, s = 1

$$I = \frac{V}{\sqrt{R_2^2 + X_2^2}}$$

and

and

$$(X_{2})_{50 \text{ Hz}} = X_{2}$$

$$(X_{2})_{25 \text{ Hz}} = 0.5 X_{2}$$
Current, $(I)_{50 \text{ Hz}} = \frac{V}{X_{2}\sqrt{\left(\frac{R_{2}}{X_{2}}\right)^{2} + 1}}$
and
Current, $(I)_{25 \text{ Hz}} = \frac{V}{X_{2}\sqrt{\left(\frac{R_{2}}{X_{2}}\right)^{2} + 0.25}}$

$$\frac{(I)_{25 \text{ Hz}}}{(I)_{50 \text{ Hz}}} = \frac{\sqrt{s_{m}^{2} + 1}}{\sqrt{s_{m}^{2} + 0.25}} \qquad \left(\text{Given}, s_{m} = \frac{R_{2}}{X_{2}} = 0.4\right)$$

$$\frac{(I)_{25 \text{ Hz}}}{(I)_{50 \text{ Hz}}} = \frac{\sqrt{0.4^{2} + 1}}{\sqrt{0.4^{2} + 0.25}} = 1.68$$

16. (b)

Given that,

$$V_{OC} = 230 \text{ V},$$

$$I_{OC} = 1.3 \text{ A},$$

$$P_{OC} = 100 \text{ W}$$

$$R_{C} = \frac{V_{0C}^{2}}{P_{0C}} = \frac{230^{2}}{100} = 529 \Omega$$

Power factor angle,

$$\phi_{OC} = \cos^{-1} \left(\frac{P_{OC}}{V_{OC} I_{OC}} \right) = \cos^{-1} \left(\frac{100}{230 \times 1.3} \right) = 70.46^{\circ}$$
$$X_{\phi} = \frac{R_C}{\tan \phi_{OC}} = \frac{529}{\tan 70.46^{\circ}} = 187.73 \ \Omega$$

Referred to high voltage side,

$$R_{C} = 529 \times \left(\frac{400}{230}\right)^{2} = 1600 \ \Omega$$
$$X_{\phi} = 187.73 \times \left(\frac{400}{230}\right)^{2} = 567.8 \ \Omega$$

17. (b)

240 V/120 V, 12 kVA has rated current of 50 A/100 A.

Auto-transformer rating = $360 \times 100 \times 10^{-3}$ = 36 kVA

For 2 winding transformer,

Output,
$$P_0 = 12 \times 1 = 12 \text{ kW}$$

 $\eta = \frac{P_0}{P_0 + P_L} = \frac{1}{1 + \frac{P_L}{P_{L0}}} = 0.962$
 $1 = 0.962 + 0.962 \left(\frac{P_L}{P_0}\right)$
 $P_L = 0.038$

(or)

(or)
$$\overline{P_0} = \overline{0.962};$$

Power loss, $P_L = \frac{12 \times 0.038}{0.962} = 0.474 \text{ kW}$

In autotransformer connection, full-load loss remains the same $P_0 = 36 \times 0.85$ = 30.6 kW At 0.85 p.f.

Efficiency,
$$\eta = \frac{1}{1 + \frac{0.474}{30.6}} = 0.985 \text{ (or) } 98.5\%$$

CT-2023-24 EE • Electrical Machines (Transformer + Induction) 13

India's Best Institute for IES, GATE & PSUe

18. (b)

$$N_{S} = \frac{120 \times 60}{4} = 1800 \text{ rpm}$$

Slip, s = $\frac{1800 - 1710}{1800} = 0.05$
 $\omega_{m} = \frac{2 \times \pi \times 1710}{60} = 179.07 \text{ rad/s}$

The torque developed at the rated voltage of 230 V is

$$T_d = \frac{2 \times 746}{179.07} = 8.33 \text{ N-m}$$

When the supply voltage is down by 10%, the torque developed by the motor is

$$T_{dL} = 8.33 \left[\frac{0.9 \times 230}{230} \right]^2 = 6.75 \text{ N-m}$$

Similarly when the supply voltage is up by 10%, the torque developed by the motor is $T_{dH} = 8.33 \ [1.1]^2 = 10.08 \ \text{N-m}$

Therefore torque varies from 6.75 to 10.08 N-m

19. (a)

Equivalent impedance, $Z_e = R_e + jX_e = R_1 + R_2 + j(X_1 + X_2)$ = 0.1 + 0.2 + j(0.15 + 0.25) = 0.5∠53.13° Ω

The slip at which the motor develops maximum power is,

$$S_p = \frac{R_2}{R_2 + Z_e} = \frac{0.2}{0.2 + 0.5} = 0.286 \text{ (or) } 28.6\%$$

The maximum power developed by the motor is

$$P_{dm} = \frac{3 \times 120^2}{2(0.3 + 0.5)} = 27000 \text{ W}$$

= 27 kW

20.

Given,

(b)

 $V_1 = 1000 \text{ V},$ $V_2 = 400 \text{ V}$ No load current, $I_{e1} = 3 \text{ A}$ at 0.75 lag p.f. No load current on *l.v.* side;

$$I_{e2} = I_{e1} \times \frac{V_1}{V_2} = 3.0 \times \frac{1000}{400} = 7.5 A$$

At no load, the p.f. remains same on both sides; then power factor = 0.75 lag

21. (d)

Given, $turn ratio = \frac{No. of turns in H.V. winding}{No. of turns in L.V. winding}$

$$a = \frac{2750}{2500} = 1.1$$

25 kVA

Rating of two winding transformer;

$$S_{TW} =$$

Rating of auto transformer;

$$S_{\text{auto}} = \left(\frac{a_{\text{auto}}}{a_{\text{auto}} - 1}\right) \times S_{TW}$$
$$= \frac{1.1}{1.1 - 1} \times 25 = 275 \text{ kVA}$$

Power transferred conductively

$$= \left(\frac{1}{a_{\text{auto}}}\right) s_{\text{auto}} = \frac{27.5}{1.1} = 250 \text{ kVA}$$

and power transferred inductively

$$= \left(1 - \frac{1}{a_{\text{auto}}}\right) = \left(1 - \frac{1}{1.1}\right) \times 275 = 25 \text{ kVA}$$

22. (d)

The total power input in sumpner's test or back to back test is sum of individual iron and full load copper losses P_i and P_{cu} respectively. Hence the total input power will be twice of $(P_i + P_{cu})$ individual losses of identical transformer. Hence option (d) is correct.

23. (b)

As we can write:

Voltage regulation; $V.R = Z_{pu} \cdot \cos(\theta_{eq} - \phi)$ For leading power factor angle = -30° $V.R. = 0.1 \cos(90^\circ + 30^\circ)$ If resistance is negligible; then $\theta_{eq} = 90^\circ$ therefore; $V.R. = 0.1\{-\sin 30^\circ\}$ $= -0.1 \times 0.5 = -0.05$ % V.R. = -5%

24. (c)

Given, Emf per turn on each side = 9 volts/turn No. of turns at secondary side,

 $= \frac{\text{Secondary voltage}}{\text{Voltage per turn}} = \frac{210}{9} \simeq 24$

India's Best Institute for IES, GATE & PSUs

...

$$E_{\text{phase}} = 4.44 f N_{ph} \times \phi_{\text{max}}$$
$$\phi_{\text{max}} = \frac{(E_{\text{phase}} / N_{ph})}{4.44 f}$$

At secondary side,

$$\phi_{\text{max}} = \frac{9}{4.44 \times 50} = 0.0405 \text{ Wb}$$

: We know that;

$$\phi_{\text{max}} = B_{\text{max}} \times A_c$$
$$A_c = \frac{\phi_{\text{max}}}{B_{\text{max}}} = \frac{0.0405}{1.2}$$
$$A_c = 337.5 \text{ cm}^2$$

25. (d)

The torque developed in induction motor, is proportional to V^2 $T \, \propto \, V^2$

or,

$$\frac{T_1}{T_2} = \frac{V_1^2}{V_2^2}$$

$$T_2 = \left(\frac{V_2}{V_1}\right)^2 \times T_1$$

$$T_2 = \left(\frac{200}{400}\right)^2 \times 100 = 25 \text{ N-m}$$

26. (d)

Given;

and as we know,

$$T_{\max} = 4 \times T_{fl}$$

$$T_{st} = 1.6 T_{fl}$$

$$\frac{T_{st}}{T_{\max}} = \frac{2}{\frac{s_{\max,T}}{1} + \frac{1}{s_{\max,T}}}$$

or
$$\frac{1.6}{4} = \frac{2}{\frac{s_{\max,T}}{1} + \frac{1}{s_{\max,T}}}$$

$$0.4 = \frac{2s_{\max,T}}{s_{\max,T}^2 + 1}$$

or
$$s_{\max,T}^2 - 5s_{\max,T} + 1 = 0$$

This yields,
$$s_{\max,T} = \frac{5 \pm \sqrt{21}}{2}$$

Neglecting the higher values;
We get,
$$s_{\max,T} = 0.21$$

...(i)

27. (a)

Line current taken from the supply; $I_{st} = x^2 I_{sc}$ The supply line current at start $= 2 I_{fl}$ short circuit current, $I_{sc} = 5 I_{fl}$ From equation (i), $2 I_{fl} = x^2 \times 5 I_{fl}$ $x^2 = \frac{2}{5}$ or, $x = 0.6324 \approx 63.24\%$

28.

Given,

(c)

 $\begin{array}{rl} R_{e~(\mathrm{p.u.})} &=& 0.015~\mathrm{p.u.}\\ \mathrm{and} & X_{e(~\mathrm{p.u.})} &=& 0.04~\mathrm{p.u.}\\ \mathrm{Let} \mbox{ us take base voltage } &=& 3300~\mathrm{V}\\ \mathrm{then}, & V_{H} &=& 1~\mathrm{p.u.}\\ \mathrm{Full \ load \ current} &=& 1.0 \angle -36.86^{\circ}~\mathrm{p.u.} \end{array}$

The equivalent circuit diagram on h.v. side can be drawn as below (neglecting shunt parameters)

:. From circuit diagram,

$$V_H = V'_2 + I'_2 (R_e \cos \theta + X_e \sin \theta)$$

$$V'_2 = 1 - 1(0.015 \times 0.8 + 0.04 \times 0.6)$$

$$V'_2 = 0.964 \text{ p.u.}$$

Secondary voltage on secondary side;

$$V_2 = 230 \times 0.964 = 221.72 \text{ V}$$

29. (c)

From the given diagram,

$$N_1: N_2: N_3 = 9:3:1$$

Induced emf = 400∠0° V

As we know that; $\frac{E_1}{E_2} = \frac{N_1}{N_2}$

$$E_2 = \frac{N_2}{N_1} E_1 = \left(\frac{3}{9}\right) \times 400 \angle 0^\circ = \frac{400}{3} \angle 0^\circ V$$

and

 \Rightarrow

 \Rightarrow

$$\frac{E_1}{E_3} = \frac{N_1}{N_3}$$
$$E_3 = \left(\frac{1}{9}\right) 400 \angle 0^\circ = \frac{400}{9} \angle 0^\circ V$$

 \Rightarrow

Current in secondary winding;

$$\Rightarrow I_2 = \frac{E_2}{R} = \frac{400/3}{20} = \frac{20}{3} \text{A}$$

Current in tertiary winding;

$$I_3 = \frac{E_3}{-jX_c} = \frac{400/9}{-j5} = \frac{80}{9} \angle 90^\circ \text{A}$$

 I_2 referred to primary side,

$$I_2' = \left(\frac{N_2}{N_1}\right) I_2 = \left(\frac{3}{9}\right) \times \frac{20}{3} = \frac{20}{9} \angle 0^\circ A$$

 I_3 referred to primary side,

$$I'_{3} = \left(\frac{N_{3}}{N_{1}}\right)I_{3} = \frac{1}{9} \times \frac{80}{9} \angle 90^{\circ} A = \frac{80}{81} \angle 90^{\circ} A$$

ent, $I_{1} = \frac{20}{9} \angle 0^{\circ} + \frac{80}{81} \angle 90^{\circ}$
 $= \frac{20}{9}(9 + i4) A$

Then supply curre

$$= \frac{20}{81}(9+j4)A$$

30. (b)

Given, N_r (rotor speed) = 1400 rpm

Synchronous speed,
$$N_s = \frac{120 \times 50}{4} = 1500 \text{ rpm}$$

 \Rightarrow Slip at N_r $s = \frac{1500 - 1400}{1500} = \frac{1}{15}$

Rotor impedance at slip, $s = \frac{1}{15}$

$$\begin{array}{rcl} j,s &=& 15\\ Z_{2s} &=& R_2 + jsX_{20}\\ &=& 1 + j \times \frac{1}{15} \times 4\\ &=& 1 + j \; 0.2667 = 1.0349 \angle 14.93^\circ \; \Omega \end{array}$$

Power factor at 1400 rpm is

 $= \cos 14.93^{\circ} = 0.9662$ (lag)