CLASS TEST

ELECTRICAL MACHINES

ELECTRICAL ENGINEERING

Date of Test : 24/06/2023

ANSWER KEY

| 1. | (a) | 7. | (c) | 13. | (b) | 19. | (a) | 25. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (d)

DETAILED EXPLANATIONS

1. (a)

We know for per unit loading,

$$
\left(\overrightarrow{S_{f \text { p.u. }}}{ }^{*}\right) \propto \frac{1}{\left(Z_{f \Omega}\right)\left(S_{f \text { rated }}\right)}
$$

for first transformer produced $\left(Z_{j \Omega}\right) \times\left(S_{j \text { rated }}\right)$ is lowest
i.e. $\quad\left(Z_{j \Omega}\right) \times\left(S_{j \text { rated }}\right)=1000 \times 2=2000$

So, it will reach full load first.
2. (b)

When h.v. side is exicted,

$$
\begin{aligned}
\text { core loss } & =V I \cos \phi \\
& =1000 \times 3 \times 0.75=2250 \mathrm{~W}
\end{aligned}
$$

When l.v. side is excited,

$$
\begin{aligned}
\text { core loss } & =V I \cos \phi=2250 \mathrm{~W} \\
I & =\frac{2250}{V \times \cos \phi}=\frac{2250}{400 \times 0.75}=7.5 \mathrm{~A}
\end{aligned}
$$

Power factor is same for a transformer.
3. (d)

We know that,

$$
\begin{array}{rlrl}
& \frac{\text { Starting torque }}{\text { Full load torque }} & =\frac{T_{s t}}{T_{f l}}=x^{2}\left(\frac{I_{s c}}{I_{f l}}\right)^{2} \times s_{f l} \\
\text { or, } & 0.4 & =x^{2} \times(5)^{2} \times 0.035 \\
\text { or, } & x^{2} & =\frac{0.4}{25 \times 0.035} \\
x & =\sqrt{\frac{0.4}{25 \times 0.035}}=0.676
\end{array}
$$

\therefore The percentage of tapping is 67.6%.
4. (c)
kVA shared $\propto \frac{1}{\text { leakage impedance }}$
5. (b)

$$
\begin{aligned}
N_{s}(\text { stator field }) & =\frac{120 \times 50}{4}=1500 \mathrm{rpm} ; \\
N_{s}(\text { rotor field }) & =\frac{120 \times 30}{4}=900 \mathrm{rpm} \\
\therefore \quad N_{r} & =1500 \pm 900=2400 \mathrm{rpm}, 600 \mathrm{rpm}
\end{aligned}
$$

6. (a)

Primary is star connected and secondary is delta connected.

$$
\begin{aligned}
\left(V_{L}\right)_{\text {primary }} & =11000 \mathrm{~V} \\
\left(V_{\text {ph }}\right)_{\text {primary }} & =\frac{11000}{\sqrt{3}} \\
\frac{\left(V_{\text {ph }}\right)_{\text {sec }}}{\left(V_{\mathrm{ph}}\right)_{\text {prim }}} & =\frac{1}{5} \\
\therefore \quad \text { Turns ratio } & =\left(\frac{\text { High voltage }}{\text { Low voltage }}\right)_{\text {phase }} \\
\therefore \quad\left(V_{\mathrm{ph}}\right)_{\text {sec }} & =\frac{11000}{5 \sqrt{3}} \mathrm{~V} \\
\left(V_{\mathrm{ph}}\right)_{\Delta} & =\left(V_{L}\right)_{\Delta} \\
\text { Output kVA } & =\sqrt{3} V_{L} I_{L} \\
& =\sqrt{3} \times \frac{11000}{5 \sqrt{3}} \times 423=930.6 \mathrm{kVA}
\end{aligned}
$$

7. (c)

Transformer-1,

$$
750 \mathrm{kVA}, \mathrm{Z}_{1}=0.018+j 0.09 \text { p.u. (on } 750 \mathrm{kVA} \text { base) }
$$

Transformer-2,
$250 \mathrm{kVA}, \mathrm{Z}_{2}=0.022+j 0.10$ p.u. (on 250 kVA base)

$$
\begin{aligned}
\mathrm{Z}_{2 \text { new }} & =(0.022+j 0.10) \times \frac{750}{250} \\
& =(0.066+j 0.30) \mathrm{p} . \mathrm{u}(\text { on } 750 \mathrm{kVA} \text { base })
\end{aligned}
$$

Load shared by transformer 2 is,

$$
\begin{aligned}
\vec{S}_{2}^{*} & =\left(\frac{\vec{Z}_{1}}{\vec{Z}_{1}+\vec{Z}_{2}}\right) \vec{S}_{L}^{*} \\
& =\frac{0.018+j 0.09}{0.084+j 0.39} \times\left(1000 \angle-\cos ^{-1}(0.8)\right) \\
& =230.06 \angle-36.02^{\circ}
\end{aligned}
$$

Load shared by second transformer,

$$
\vec{S}_{2}=230.06 \angle 36.02 \mathrm{kVA}
$$

8. (a)

For same air gap flux, $\frac{V}{f}$ ratio should be constant
Flux,

$$
\begin{aligned}
\phi & =\frac{V}{f}=\text { constant } \\
\frac{V_{2}}{f_{2}} & =\frac{V_{1}}{f_{1}} \\
V_{2} & =\frac{400}{50} \times 30=240 \mathrm{~V}
\end{aligned}
$$

Synchronous speed of motor for 50 Hz source

$$
\begin{aligned}
N_{s} & =\frac{120 \times 50}{4}=1500 \mathrm{rpm} \\
\text { Slip, } s_{1} & =\frac{1500-1440}{1500}=0.04
\end{aligned}
$$

At small value of slip, the electromagnetic torque is given by

$$
\begin{aligned}
& T=\frac{3}{\omega_{s}} \times \frac{V^{2} s}{r_{2}} \\
& T \propto \frac{V^{2}}{f} \cdot s
\end{aligned}
$$

For same torque, $\frac{V_{2}^{2}}{f_{2}} \cdot s_{2}=\frac{V_{1}^{2}}{f_{1}} \cdot s_{1}$

$$
\begin{aligned}
\frac{(240)^{2}}{30} s_{2} & =\frac{400^{2}}{50} \times 0.04 \\
\text { Slip, } s_{2} & =0.067
\end{aligned}
$$

Synchronous speed of motor at 30 Hz source,

$$
N_{\mathrm{s} 2}=\frac{120 \times 30}{4}=900 \mathrm{rpm}
$$

Rotor speed, $N=(1-0.067) \times 900$

$$
N=840 \mathrm{rpm}
$$

9. (b)

Point R is corresponding to maximum voltage regulation.
For maximum voltage regulation load power factor is equal to

$$
\begin{aligned}
\cos \phi & =\frac{R}{Z} \\
Z & =\sqrt{R^{2}+X^{2}}=\sqrt{0.05^{2}+0.5^{2}}
\end{aligned}
$$

Power factor, $\quad \cos \phi=0.0995$ lagging
10. (d)

Synchronous speed, $\quad \omega_{s}=\frac{2}{P} \times 2 \pi f=\frac{4 \times \pi \times 50}{6}=104.72 \mathrm{rad} / \mathrm{sec}$
Starting torque, $\quad T_{\text {starting }}=\frac{3}{\omega_{s}} \cdot \frac{E_{2}^{2} r_{2}^{\prime}}{\left(r_{2}^{\prime}\right)^{2}+\left(x_{2}^{\prime}\right)^{2}}$

$$
40=\frac{3}{104.72} \times \frac{E_{2}^{2} \times 0.32}{(0.32)^{2}+(3.2)^{2}}
$$

Rotor voltage at standstill,

$$
E_{2}=212.43 \mathrm{~V}
$$

11. (b)

For first case; $\quad \frac{V_{1}}{f_{1}}=\frac{400}{50}=8$
For second case; $\quad \frac{V_{2}}{f_{2}}=\frac{200}{25}=8$
Since, $\quad \frac{V_{1}}{f_{1}}=\frac{V_{2}}{f_{2}}=8$; the flux density B_{m} remains constant
Now, Hysteresis loss, $P_{h}=K_{1} f$
and Eddy current loss, $P_{e}=K_{2} f^{2}$
Then, \quad Iron loss, $P_{i}=K_{1} f+K_{2} f^{2}$
or,

$$
\begin{equation*}
\frac{P_{i}}{f}=\mathrm{K}_{1}+\mathrm{K}_{2} f \tag{i}
\end{equation*}
$$

Now, from I ${ }^{\text {st }}$ case:

$$
\begin{equation*}
\frac{3200}{50}=K_{1}+K_{2} \times 50 \tag{ii}
\end{equation*}
$$

From $I^{\text {nd }}$ case:

$$
\begin{equation*}
\frac{1000}{25}=K_{1}+25 K_{2} \tag{iii}
\end{equation*}
$$

From (ii) and (iii), we get

$$
K_{1}=16
$$

and

$$
K_{2}=\frac{24}{25}
$$

Hysteresis loss, $P_{h}=16 \times 50=800 \mathrm{~W}$
and, eddy current loss, $P_{e}=\frac{24}{25} \times 2500=2400 \mathrm{~W}$
12. (d)

$$
\begin{aligned}
T_{s} & =1.5 T_{f} \\
T_{\max .} & =2 T_{f}
\end{aligned}
$$

For maximum torque, $s_{m T}=\frac{r_{2}}{x_{2}}$

$$
\frac{T_{s}}{T_{\max }}=\frac{1.5 T_{f}}{2 T_{f}}=\frac{2 s_{m T}}{1+s_{m T}^{2}}
$$

i.e. $\quad 1.5 s_{m T}^{2}-4 s_{m T}+1.5=0$
$\therefore \quad s_{m T}=0.45$
13. (b)
kVA supplied by Vee connection transformer,

$$
S_{V e e}=\frac{1}{\sqrt{3}} \times S_{3-\phi}=\frac{3000}{\sqrt{3}}=1732 \mathrm{kVA}
$$

p.f. angle of transformer- $1=\phi+30^{\circ}=\cos ^{-1}(0.95)+30^{\circ}=48.19^{\circ}$
$\cos \phi_{1}=\cos 48.19^{\circ}=0.67$ lagging
p.f. angle of transformer- $2=\phi-30^{\circ}=\cos ^{-1}(0.95)-30^{\circ}=-11.8^{\circ}$

$$
\begin{aligned}
\cos \phi_{2} & =\cos 11.8^{\circ}=0.98 \text { leading } \\
\vec{S}_{1} & =1732 \angle 48.19^{\circ} \mathrm{kVA} \\
\vec{S}_{2} & =1732 \angle-11.8^{\circ} \mathrm{kVA}
\end{aligned}
$$

14. (b)

We know approximate voltage regulation formula,

$$
\text { V.R. }=Z_{\text {p.u. }} \cos \left(\theta_{\mathrm{eq}}-\phi\right)
$$

For maximum voltage regulation,

$$
\begin{aligned}
\theta_{\text {eq }}-\phi & =0^{\circ} \\
\text { V.R. } & =Z_{\text {p.u. }} \cos 0^{\circ} \\
& =Z_{\text {p.u. }}
\end{aligned}
$$

For minimum voltage regulation,

$$
\begin{aligned}
\phi & =-90^{\circ} \\
\text { V.R. } & =Z_{\text {p.u. }} \cos \left(90^{\circ}+\theta_{\text {eq }}\right) \\
& =-Z_{\text {p.u. }} \sin \left(\theta_{\text {eq }}\right) \\
& =-X_{\text {p.u. }}
\end{aligned}
$$

15. (b)

At starting slip, $\quad s=1$
and

$$
\begin{aligned}
I & =\frac{V}{\sqrt{R_{2}^{2}+X_{2}^{2}}} \\
\left(X_{2}\right)_{50 \mathrm{~Hz}} & =X_{2} \\
\left(X_{2}\right)_{25 \mathrm{~Hz}} & =0.5 X_{2}
\end{aligned}
$$

$$
\text { Current, }(I)_{50 \mathrm{~Hz}}=\frac{V}{X_{2} \sqrt{\left(\frac{R_{2}}{X_{2}}\right)^{2}+1}}
$$

and Current, $(I)_{25 \mathrm{~Hz}}=\frac{V}{X_{2} \sqrt{\left(\frac{R_{2}}{X_{2}}\right)^{2}+0.25}}$

$$
\frac{(I)_{25 \mathrm{~Hz}}}{(I)_{50 \mathrm{~Hz}}}=\frac{\sqrt{s_{m}^{2}+1}}{\sqrt{s_{m}^{2}+0.25}} \quad \quad\left(\text { Given }, s_{m}=\frac{R_{2}}{X_{2}}=0.4\right)
$$

$$
\frac{(I)_{25 \mathrm{~Hz}}}{(I)_{50 \mathrm{~Hz}}}=\frac{\sqrt{0.4^{2}+1}}{\sqrt{0.4^{2}+0.25}}=1.68
$$

16. (b)

Given that,

$$
\begin{aligned}
V_{O C} & =230 \mathrm{~V} \\
I_{O C} & =1.3 \mathrm{~A} \\
P_{O C} & =100 \mathrm{~W} \\
R_{C} & =\frac{V_{O C}^{2}}{P_{O C}}=\frac{230^{2}}{100}=529 \Omega
\end{aligned}
$$

Power factor angle,

$$
\begin{aligned}
\phi_{O C} & =\cos ^{-1}\left(\frac{P_{O C}}{V_{O C} I_{O C}}\right)=\cos ^{-1}\left(\frac{100}{230 \times 1.3}\right)=70.46^{\circ} \\
X_{\phi} & =\frac{R_{C}}{\tan \phi_{O C}}=\frac{529}{\tan 70.46^{\circ}}=187.73 \Omega
\end{aligned}
$$

Referred to high voltage side,

$$
\begin{aligned}
& R_{C}=529 \times\left(\frac{400}{230}\right)^{2}=1600 \Omega \\
& X_{\phi}=187.73 \times\left(\frac{400}{230}\right)^{2}=567.8 \Omega
\end{aligned}
$$

17. (b)
$240 \mathrm{~V} / 120 \mathrm{~V}, 12 \mathrm{kVA}$ has rated current of $50 \mathrm{~A} / 100 \mathrm{~A}$.

Auto-transformer rating $=360 \times 100 \times 10^{-3}$
$=36 \mathrm{kVA}$
For 2 winding transformer,

$$
\text { Output, } P_{0}=12 \times 1=12 \mathrm{~kW}
$$

$$
\begin{aligned}
& \eta=\frac{P_{0}}{P_{0}+P_{L}}=\frac{1}{1+\frac{P_{L}}{P_{L 0}}}=0.962 \\
& 1=0.962+0.962\left(\frac{P_{L}}{P_{0}}\right)
\end{aligned}
$$

(or)

$$
\frac{P_{L}}{P_{0}}=\frac{0.038}{0.962}
$$

Power loss,

$$
P_{L}=\frac{12 \times 0.038}{0.962}=0.474 \mathrm{~kW}
$$

In autotransformer connection, full-load loss remains the same
At 0.85 p.f.

$$
\begin{aligned}
P_{0} & =36 \times 0.85 \\
& =30.6 \mathrm{~kW}
\end{aligned}
$$

Efficiency,

$$
\eta=\frac{1}{1+\frac{0.474}{30.6}}=0.985 \text { (or) } 98.5 \%
$$

18. (b)

$$
\begin{aligned}
N_{S} & =\frac{120 \times 60}{4}=1800 \mathrm{rpm} \\
\text { Slip, } s & =\frac{1800-1710}{1800}=0.05 \\
\omega_{m} & =\frac{2 \times \pi \times 1710}{60}=179.07 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

The torque developed at the rated voltage of 230 V is

$$
T_{d}=\frac{2 \times 746}{179.07}=8.33 \mathrm{~N}-\mathrm{m}
$$

When the supply voltage is down by 10%, the torque developed by the motor is

$$
T_{d L}=8.33\left[\frac{0.9 \times 230}{230}\right]^{2}=6.75 \mathrm{~N}-\mathrm{m}
$$

Similarly when the supply voltage is up by 10%, the torque developed by the motor is

$$
T_{d H}=8.33[1.1]^{2}=10.08 \mathrm{~N}-\mathrm{m}
$$

Therefore torque varies from 6.75 to $10.08 \mathrm{~N}-\mathrm{m}$
19. (a)

Equivalent impedance, $Z_{e}=R_{e}+j X_{e}=R_{1}+R_{2}+j\left(X_{1}+X_{2}\right)$

$$
\begin{aligned}
& =0.1+0.2+j(0.15+0.25) \\
& =0.5 \angle 53.13^{\circ} \Omega
\end{aligned}
$$

The slip at which the motor develops maximum power is,

$$
S_{P}=\frac{R_{2}}{R_{2}+Z_{e}}=\frac{0.2}{0.2+0.5}=0.286 \text { (or) } 28.6 \%
$$

The maximum power developed by the motor is

$$
\begin{aligned}
P_{d m} & =\frac{3 \times 120^{2}}{2(0.3+0.5)}=27000 \mathrm{~W} \\
& =27 \mathrm{~kW}
\end{aligned}
$$

20. (b)

Given,

$$
\begin{aligned}
V_{1} & =1000 \mathrm{~V} \\
V_{2} & =400 \mathrm{~V}
\end{aligned}
$$

No load current, $I_{e 1}=3 \mathrm{~A}$ at 0.75 lag p.f.
No load current on l.v. side;

$$
I_{e 2}=I_{e 1} \times \frac{V_{1}}{V_{2}}=3.0 \times \frac{1000}{400}=7.5 \mathrm{~A}
$$

At no load, the p.f. remains same on both sides;
then power factor $=0.75 \mathrm{lag}$
21. (d)

Given, \quad turn ratio $=\frac{\text { No. of turns in H.V. winding }}{\text { No. of turns in L.V. winding }}$

$$
a=\frac{2750}{2500}=1.1
$$

Rating of two winding transformer;

$$
S_{T W}=25 \mathrm{kVA}
$$

Rating of auto transformer;

$$
\begin{aligned}
S_{\text {auto }} & =\left(\frac{a_{\text {auto }}}{a_{\text {auto }}-1}\right) \times S_{T W} \\
& =\frac{1.1}{1.1-1} \times 25=275 \mathrm{kVA}
\end{aligned}
$$

Power transferred conductively

$$
=\left(\frac{1}{a_{\text {auto }}}\right) s_{\text {auto }}=\frac{27.5}{1.1}=250 \mathrm{kVA}
$$

and power transferred inductively

$$
=\left(1-\frac{1}{a_{\text {auto }}}\right)=\left(1-\frac{1}{1.1}\right) \times 275=25 \mathrm{kVA}
$$

22. (d)

The total power input in sumpner's test or back to back test is sum of individual iron and full load copper losses P_{i} and P_{cu} respectively. Hence the total input power will be twice of $\left(P_{i}+P_{c u}\right)$ individual losses of identical transformer. Hence option (d) is correct.
23. (b)

As we can write:
Voltage regulation; $V \cdot R=Z_{\mathrm{pu}} \cdot \cos \left(\theta_{\mathrm{eq}}-\phi\right)$
For leading power factor angle $=-30^{\circ}$

$$
V . R .=0.1 \cos \left(90^{\circ}+30^{\circ}\right)
$$

If resistance is negligible;
then

$$
\begin{aligned}
\theta_{\mathrm{eq}} & =90^{\circ} \\
V . R . & =0.1\left\{-\sin 30^{\circ}\right\} \\
& =-0.1 \times 0.5=-0.05 \\
\% \text { V.R. } & =-5 \%
\end{aligned}
$$

24. (c)

Given,
Emf per turn on each side $=9$ volts/turn
No. of turns at secondary side,

$$
=\frac{\text { Secondary voltage }}{\text { Voltage per turn }}=\frac{210}{9} \simeq 24
$$

$\therefore \quad E_{\text {phase }}=4.44 f N_{p h} \times \phi_{\max }$

$$
\phi_{\max }=\frac{\left(E_{\text {Phase }} / N_{p h}\right)}{4.44 f}
$$

At secondary side,

$$
\phi_{\max }=\frac{9}{4.44 \times 50}=0.0405 \mathrm{~Wb}
$$

\therefore We know that;

$$
\begin{aligned}
\phi_{\max } & =B_{\max } \times A_{c} \\
A_{c} & =\frac{\phi_{\max }}{B_{\max }}=\frac{0.0405}{1.2} \\
A_{c} & =337.5 \mathrm{~cm}^{2}
\end{aligned}
$$

25. (d)

The torque developed in induction motor, is proportional to V^{2}

$$
T \propto V^{2}
$$

or, $\quad \frac{T_{1}}{T_{2}}=\frac{V_{1}^{2}}{V_{2}^{2}}$

$$
\begin{aligned}
& T_{2}=\left(\frac{V_{2}}{V_{1}}\right)^{2} \times T_{1} \\
& T_{2}=\left(\frac{200}{400}\right)^{2} \times 100=25 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

26. (d)

Given;
and

$$
\begin{aligned}
T_{\max } & =4 \times T_{f l} \\
T_{s t} & =1.6 T_{f l}
\end{aligned}
$$

as we know,

$$
\frac{T_{s t}}{T_{\max }}=\frac{2}{\frac{s_{\max , T}}{1}+\frac{1}{s_{\max , T}}}
$$

or

$$
\begin{aligned}
\frac{1.6}{4} & =\frac{2}{\frac{s_{\max , T}}{1}+\frac{1}{s_{\max , T}}} \\
0.4 & =\frac{2 s_{\max , T}}{s_{\max . T}^{2}+1}
\end{aligned}
$$

or

$$
s_{\max . T}^{2}-5 s_{\max , T}+1=0
$$

This yields, $\quad s_{\max , T}=\frac{5 \pm \sqrt{21}}{2}$
Neglecting the higher values;
We get, $\quad s_{\max , T}=0.21$
27. (a)

Line current taken from the supply;

$$
\begin{equation*}
I_{s t}=x^{2} I_{s c} \tag{i}
\end{equation*}
$$

The supply line current at start

$$
=2 I_{f l}
$$

short circuit current, $I_{s c}=5 I_{f l}$
From equation (i),

$$
\begin{aligned}
2 I_{f l} & =x^{2} \times 5 I_{f l} \\
x^{2} & =\frac{2}{5} \\
\text { or, } \quad x & =0.6324 \approx 63.24 \%
\end{aligned}
$$

28. (c)

Given,
and

$$
R_{e \text { (p.u.) }}=0.015 \text { p.u. }
$$

Let us take base voltage $=3300 \mathrm{~V}$
then,

$$
V_{H}=1 \text { p.u. }
$$

Full load current $=1.0 \angle-36.86^{\circ}$ p.u.
The equivalent circuit diagram on h.v. side can be drawn as below (neglecting shunt parameters)

\therefore From circuit diagram,

$$
\begin{aligned}
V_{H} & =V_{2}^{\prime}+I_{2}^{\prime}\left(R_{e} \cos \theta+X_{e} \sin \theta\right) \\
V_{2}^{\prime} & =1-1(0.015 \times 0.8+0.04 \times 0.6) \\
V_{2}^{\prime} & =0.964 \text { p.u. }
\end{aligned}
$$

Secondary voltage on secondary side;

$$
V_{2}=230 \times 0.964=221.72 \mathrm{~V}
$$

29. (c)

From the given diagram,

$$
\begin{array}{rlrl}
& & N_{1}: N_{2}: N_{3} & =9: 3: 1 \\
\text { Induced emf } & =400 \angle 0^{\circ} \mathrm{V} \\
\text { As we know that; } \quad \frac{E_{1}}{E_{2}} & =\frac{N_{1}}{N_{2}} \\
\Rightarrow & E_{2} & =\frac{N_{2}}{N_{1}} E_{1}=\left(\frac{3}{9}\right) \times 400 \angle 0^{\circ}=\frac{400}{3} \angle 0^{\circ} \mathrm{V} \\
\text { and } & \frac{E_{1}}{E_{3}} & =\frac{N_{1}}{N_{3}} \\
\Rightarrow & E_{3} & =\left(\frac{1}{9}\right) 400 \angle 0^{\circ}=\frac{400}{9} \angle 0^{\circ} \mathrm{V}
\end{array}
$$

Current in secondary winding;

$$
\Rightarrow \quad I_{2}=\frac{E_{2}}{R}=\frac{400 / 3}{20}=\frac{20}{3} \mathrm{~A}
$$

Current in tertiary winding;
$\Rightarrow \quad I_{3}=\frac{E_{3}}{-j X_{c}}=\frac{400 / 9}{-j 5}=\frac{80}{9} \angle 90^{\circ} \mathrm{A}$
I_{2} referred to primary side,

$$
I_{2}^{\prime}=\left(\frac{N_{2}}{N_{1}}\right) I_{2}=\left(\frac{3}{9}\right) \times \frac{20}{3}=\frac{20}{9} \angle 0^{\circ} \mathrm{A}
$$

I_{3} referred to primary side,

$$
I_{3}^{\prime}=\left(\frac{N_{3}}{N_{1}}\right) I_{3}=\frac{1}{9} \times \frac{80}{9} \angle 90^{\circ} \mathrm{A}=\frac{80}{81} \angle 90^{\circ} \mathrm{A}
$$

Then supply current, $\quad I_{1}=\frac{20}{9} \angle 0^{\circ}+\frac{80}{81} \angle 90^{\circ}$

$$
=\frac{20}{81}(9+j 4) \mathrm{A}
$$

30. (b)

Given, $\quad N_{r}($ rotor speed $)=1400 \mathrm{rpm}$
Synchronous speed, $N_{s}=\frac{120 \times 50}{4}=1500 \mathrm{rpm}$
\Rightarrow Slip at $N_{r} \quad s=\frac{1500-1400}{1500}=\frac{1}{15}$
Rotor impedance at slip, $s=\frac{1}{15}$

$$
\begin{aligned}
Z_{2 s} & =R_{2}+j s X_{20} \\
& =1+j \times \frac{1}{15} \times 4 \\
& =1+j 0.2667=1.0349 \angle 14.93^{\circ} \Omega
\end{aligned}
$$

Power factor at 1400 rpm is

$$
=\cos 14.93^{\circ}=0.9662(\mathrm{lag})
$$

