CLASS TEST

India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in |
E-mail: info@madeeasy.in
Ph: 011-45124612

ANALOG ELECTRONICS

ELECTRONICS ENGINEERING

Date of Test : 22/06/2023

ANSWER KEY

 $>$1. (d)
2. (b)
3. (c)
4. (b)
5. (a)
6. (b)
7. (d)
8. (d)
9. (a)
10. (c)
11. (d)
12. (a)
13. (a)
14. (c)
15. (c)
16. (b)
17. (c)
18. (b)
19. (c)
20. (a)
21. (c)
22. (c)
23. (a)
24. (b)
25. (a)
26. (b)
27. (b)
28. (b)
29. (b)
30. (a)

DETAILED EXPLANATIONS

1. (d)

When D_{2} is ON then the value of V_{0} will be

$$
V_{0}=3-0.7 \mathrm{~V}=2.3 \mathrm{~V}
$$

Hence, D_{1} will be OFF.
Thus, \quad The current, $I=\frac{2.3-(-3)}{5} \times 10^{-3}=\frac{5.3}{5} \times 10^{-3}=1.06 \mathrm{~mA}$
3. (d)

The circuit can be redrawn as,

The circuit represents a voltage doubler circuit, if the voltage was taken by adding voltages of both the capacitors, but to calculate V_{0} we have to find the voltage stored on a single capacitor. Thus, comparing from the above figure,

$$
V_{0}=-V_{m}
$$

4. (b)
and

$$
\begin{aligned}
V_{G S}-V_{t} & =2-1.5=0.5 \mathrm{~V} \\
V_{D S} & =1 \mathrm{~V}
\end{aligned}
$$

$\therefore \quad V_{D S}>V_{G S}-V_{T}$
Hence, MOSFET is in saturation region.
5. (c)

For a fixed biased circuit,

$$
\begin{array}{rlrl}
I_{C} & =\beta I_{B}+(\beta+1) I_{c o} \\
\therefore & \frac{\partial I_{C}}{\partial I_{c o}} & =(\beta+1) \\
\therefore & S & =\frac{\partial I_{C}}{\partial I_{c o}}=100+1=101
\end{array}
$$

6. (b)

The early voltage V_{A} can be calculated as

$$
V_{A}=r_{0} I_{C}
$$

where r_{0} = output resistance $=\frac{1}{\text { slope of } I_{C}-V_{C B} \text { curve }}$
thus,

$$
\begin{aligned}
r_{0} & =\frac{1}{3 \times 10^{-5}} \\
V_{A} & =\frac{1}{3 \times 10^{-5}} \times 3 \times 10^{-3}=100 \mathrm{~V} \quad\left(\because I_{C}=3 \times 10^{-3} \mathrm{~A}\right)
\end{aligned}
$$

8. (d)

The circuit can be redrawn as,

For current mirror circuit,

$$
I_{\text {reff }}=\frac{V_{C C}-V_{B E}}{R}=\frac{10-0.7}{37 \times 10^{3}}=0.251 \mathrm{~mA}
$$

now,

$$
I_{0}=\frac{I_{\text {reff }}}{\left(1+\frac{2}{\beta}\right)}=\frac{0.251}{\left(1+\frac{2}{50}\right)}=0.241 \mathrm{~mA}
$$

9. (a)

Since, the op-amp represents a closed loop unity gain amplifier.
Thus,

$$
\begin{aligned}
A_{C L} & =\frac{A_{O L}}{1+A_{O L}} \\
& =\frac{999}{1+999}=0.999
\end{aligned}
$$

10. (c)

In the given circuit

$$
\begin{aligned}
& \therefore \quad V_{o}=V_{o_{1}}-V_{o_{2}} \\
& =-4 V_{\text {in }}-5 V_{\text {in }} \\
& =-9 V_{\text {in }} \\
& \therefore \quad \frac{V_{0}}{V_{\text {in }}}=-9
\end{aligned}
$$

11. (c)

The small signal equivalent model can be drawn as

\therefore The output can be expressed as,

$$
\begin{equation*}
V_{0}=\frac{R}{R+r_{f}} V_{i n}-\frac{R}{R+r_{f}} V_{\gamma} \tag{i}
\end{equation*}
$$

Thus, the slope of line in the graph of the input output curve can be written

$$
\text { Slope }=\frac{R}{R+r_{f}}=\frac{1.2}{2-0.7}=\frac{1.2}{1.3} \quad \text {...from equation (i) }
$$

Thus,

$$
r_{f}=83.33 \Omega
$$

12. (b)

In the transistor $V_{G S}=V_{D S}$
Since, the gate and drain terminals are shorted,
the transistor will always be in saturation mode.
thus,

$$
\begin{aligned}
& I_{D}=\frac{\mu_{n} C_{o x}}{2}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t}\right)^{2} \\
& I_{D}=\frac{V_{0}}{R}=\frac{3}{3} \times 10^{-3}=1 \mathrm{~mA}
\end{aligned}
$$

now,
thus,

$$
1 \times 10^{-3}=\frac{50 \times 10^{-3}}{2}\left(\frac{W}{L}\right) \times(2-1)^{2}
$$

$$
\left(\frac{W}{L}\right)=\frac{1}{25}=0.04
$$

13. (c)

and

$$
\begin{aligned}
V_{s} & =V_{x}+V_{D 1} \\
I & =I_{1}+I_{2}
\end{aligned} \quad\left(\because V_{D 1}=V_{D 2}\right)
$$

thus

$$
2 \times 10^{-3}=10^{-12}\left[e^{\frac{V_{D 1}}{26 \times 10^{-3}}}-1\right]+10^{-10}\left[e^{\frac{V_{D 1}}{26 \times 10^{-3}}}-1\right]
$$

$$
2 \times 10^{-3} \approx 10^{-10}(1.01) \cdot e^{\frac{V_{D 1}}{26 \times 10^{-3}}}
$$

$$
\frac{V_{D 1}}{26 \times 10^{-3}}=\ln \left(1.9801 \times 10^{7}\right)=16.801
$$

$$
\therefore \quad V_{D 1}=0.437 \mathrm{~V}
$$

$$
\text { Now, } \quad \begin{aligned}
V_{x} & =2 \times 10^{-3} \times 1 \times 10^{3}=2 \mathrm{~V} \\
V_{s} & =V_{x}+V_{D 1}=2+0.437 \\
& =2.437 \mathrm{~V}
\end{aligned}
$$

14. (d)

Assuming the transistor to be in active region, we get,

$$
\begin{aligned}
I_{C} & =\alpha I_{E}=\frac{\beta}{1+\beta} \cdot I_{E}=\frac{60}{61} \times 0.61 \times 10^{-3} \\
& =0.6 \mathrm{~mA}
\end{aligned}
$$

Now, the voltage at $V_{C}=-10+4.7 \times 0.6=-7.18 \mathrm{~V}$

$$
\text { Value of } I_{B}=\frac{I_{C}}{\beta}=\frac{0.6}{60} \times 10^{-3}=1 \times 10^{-5} \mathrm{~A}=10 \mu \mathrm{~A}
$$

now,

$$
V_{B}=I_{B} R_{B}
$$

$$
=10 \times 10^{-6} \times 50 \times 10^{3}=0.5 \mathrm{~V}
$$

$$
\therefore \quad V_{E}=V_{B}+V_{E B}=0.5+0.7=1.2 \mathrm{~V}
$$

$$
V_{E C}=1.2-(-7.18)=8.38 \mathrm{~V}
$$

$\therefore \quad$ Power dissipated $=V_{E C} \times I_{C}=8.38 \times 0.6 \times 10^{-3} \approx 5.028 \mathrm{~mW}$
15. (a)

The current of both the transistors are equal since they are perfectly matched.
Thus,

$$
\begin{aligned}
\frac{I}{2} & =\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)\left(\mathrm{V}_{G S 1}-V_{t}\right)^{2} \\
10 \times 10^{-3} & =\frac{1}{2} \times 500 \times 10^{-6} \times 100\left(V_{G S 1}-0.5\right)^{2} \\
V_{G S 1} & =V_{G S 2}=1.132 \mathrm{~V} \\
V_{S} & =V_{c m}-V_{G S 1}=3-1.132=1.868 \mathrm{~V}
\end{aligned}
$$

$$
\therefore \quad V_{G S 1}=V_{G S 2}=1.132 \mathrm{~V}
$$

Thus,
16. (b)

The small signal r_{e} equivalent circuit can be drawn as
and $\quad i_{e}=\frac{-V_{\mathrm{sig}}}{R_{\mathrm{sig}}+r_{e}}$

$$
\begin{equation*}
V_{0}=-\alpha\left(R_{C} \| R_{L}\right) i_{e} \tag{i}
\end{equation*}
$$

Combining equation (i) and (ii), we get,

$$
V_{0}=\frac{\alpha\left(R_{C} \| R_{L}\right)}{R_{\mathrm{sig}}+r_{e}} \cdot V_{\mathrm{sig}}
$$

thus,

$$
\frac{V_{0}}{V_{\mathrm{sig}}}=\frac{\alpha\left(R_{C} \| R_{L}\right)}{R_{\mathrm{sig}}+r_{e}}
$$

17. (a)

From the figure it can be seen that,
now,

$$
\begin{aligned}
& I_{C}=I_{E}=0.5 \mathrm{~mA} \quad(\because \beta \text { is very large }) \\
& g_{m}=\frac{I_{C}}{V_{T}} \approx \frac{I_{E}}{V_{T}}=\frac{0.5 \times 10^{-3}}{25 \times 10^{-3}} \mathrm{~A} / \mathrm{V}=20 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

Drawing the equivalent small signal circuit, we get,

Now, applying KVL, we get

$$
\begin{aligned}
v_{\text {in }}+v_{\pi} & =0 \\
v_{\text {in }} & =-v_{\pi} \\
v_{0} & =-g_{m} v_{\pi} \times R_{C} \\
v_{0} & =g_{m} R_{c} v_{\text {in }} \\
\frac{v_{0}}{v_{\text {in }}} & =g_{m} R_{c}=20 \times 10^{-3} \times 7.5 \times 10^{3}=150
\end{aligned}
$$

and
18. (b)

Base emitter loop

$500 \mathrm{k} I_{B}+0.7+1 \mathrm{k}\left(I_{B}+I_{C}\right)=12$

$$
I_{C}=100 I_{B}
$$

$$
I_{E}=101 I_{B}
$$

from here

$$
I_{B}=18.80 \mu \mathrm{~A}
$$

$$
r_{\pi}=\beta \times \frac{V_{T}}{I_{C}}=\frac{V_{T}}{I_{B}}=\frac{26}{18.8} \mathrm{k} \Omega=1.383 \mathrm{k} \Omega
$$

$$
R_{\mathrm{in}}=r_{\pi}+(1+\beta) R_{E}
$$

$$
=1.383 \mathrm{k}+101 \times 1 \mathrm{k}=102.383 \mathrm{k} \Omega
$$

19. (b)

For the transistor

$$
V_{S}=V_{B}=V_{A}
$$

due to virtual ground,
thus,

$$
V_{S}=0 \mathrm{~V}
$$

Hence,

$$
\begin{aligned}
& I_{D}=\frac{0-(-10)}{10 \times 10^{3}}=1 \mathrm{~mA} \\
& I_{D}=\frac{\mu_{n} C_{o x} W}{2 L}\left(V_{G S}-V_{T}\right)^{2}
\end{aligned}
$$

$\therefore \quad V_{G S}-V_{T}=\sqrt{\frac{I_{D}}{\frac{\mu_{n} C_{o x} W}{2 L}}}$
$V_{G S}-V_{T}=\sqrt{\frac{1 \times 10^{-3}}{\frac{0.5 \times 10^{-3}}{2}}}$
$V_{G S}-V_{T}=2 \mathrm{~V}$
For the MOSFET to be in saturation region

$$
V_{D S} \geq V_{G S}-V_{T}
$$

\therefore at the edge of saturation

$$
\begin{aligned}
& V_{D S}=V_{G S}-V_{T}=2 \mathrm{~V} \\
& \because \quad V_{S}=0 \\
& \therefore \quad V_{D}=V_{G}-V_{T} \\
& \Rightarrow \quad V_{D D}=2 \mathrm{~V}
\end{aligned}
$$

20. (a)
$\because R_{i} \neq \infty$ thus concept of virtual ground is not applicable for this circuit.

$$
\begin{aligned}
& V_{\text {in }} O \rightarrow I_{I_{1}}^{R_{1}} \\
& V_{0}=-\frac{R_{2}}{R_{1}}\left[V_{\text {in }}+\frac{V_{0}}{A_{v}}\right]-\frac{V_{0}}{A_{v}} \\
& V_{0}=-\frac{R_{2}}{R_{1}} V_{\text {in }}-\frac{1}{A_{v}}\left[1+\frac{R_{2}}{R_{1}}\right] V_{0} \\
& \therefore \quad \frac{V_{0}}{V_{\text {in }}}=\frac{-\frac{R_{2}}{R_{1}}}{1+\frac{1}{A_{v}}\left(1+\frac{R_{2}}{R_{1}}\right)}
\end{aligned}
$$

Thus,

$$
\frac{V_{0}}{V_{\mathrm{in}}}=\frac{-100 / 1}{1+\frac{1}{10^{3}}\left(1+\frac{100}{1}\right)}=\frac{-100}{1.1}=-90.83 \mathrm{~V} / \mathrm{V}
$$

21. (c)

$$
\begin{aligned}
& \text { Slew rate }
\end{aligned}=\left.\frac{d V_{0}}{d t}\right|_{\max } ~\left(\begin{array}{ll}
\text { Slew rate } & =A \cdot \frac{d V_{0}}{d t}=A \cdot \frac{d}{d t} A_{m} \sin (\omega t) \\
\therefore \quad \text { Slew rate } & =A A_{m} \omega
\end{array}\right.
$$

now,

$$
A=10^{\frac{66.0206}{20}} \approx 2000
$$

$$
\therefore \quad 10 \times 10^{6}=2 \times 10^{3} \times A_{m} \times 2 \pi \times 10 \times 10^{3}
$$

$$
\therefore \quad A_{m}=79.57 \mathrm{mV}
$$

22. (c)

Drawing the small signal equivalent model of the transistor, we get,

Now,

and

$$
V_{\mathrm{in}}=V_{\pi 1}
$$

Appling KCL at $V_{0}=-V_{\pi 2}$
Applying KCL at node-2 we get

$$
\begin{aligned}
g_{m 1} V_{\pi 1}+\frac{V_{0}}{r_{\pi 2}} & =\mathrm{g}_{\mathrm{m} 2} V_{\pi 2} \\
\Rightarrow \quad g_{m 1} V_{\mathrm{in}}+\frac{V_{0}}{r_{\pi 2}} & =-g_{m 2} V_{0} \\
V_{0}\left[\frac{1}{r_{\pi 2}}+g_{m 2}\right] & =-g_{m 1} V_{\mathrm{in}} \\
\left|A_{v}\right| & =\left|\frac{V_{0}}{V_{\mathrm{in}}}\right|=\frac{g_{m 1} r_{\pi 2}}{1+g_{m 2} r_{\pi 2}}
\end{aligned}
$$

Since $\beta \gg 1$ for both the transistors.
Thus, the above expression can be approximated as

$$
\left|A_{v}\right| \approx \frac{g_{m 1}}{g_{m 2}}
$$

23. (b)

Case -I : When $V_{\text {in }}>-10 \mathrm{~V}$, then the voltage across diode D_{1} is positive so diode D_{1} is in ON state, and therefore the equivalent circuit can be drawn as

$$
V^{+}=-15 \times \frac{10}{15}=-10 \mathrm{~V}
$$

Due to virtual ground, $V^{+}=V^{-}=-10 \mathrm{~V}$
and $\quad V_{0}=V^{-}=-10 \mathrm{~V}$
$\therefore \quad V_{0}=-10 \mathrm{~V}$
Case -II : When $V_{\text {in }}<-10 \mathrm{~V}$

$$
V_{0}=+V_{\text {sat }}
$$

Thus,

$\therefore \quad V_{0}=-\frac{5}{5} \times V_{\text {in }}=-V_{\text {in }}\left(\right.$ for $\left.V_{\text {in }}<-10 \mathrm{~V}\right)$
Alternately, we can write the equation of the graph by applying KCL at node V^{-}

$$
\because \quad V^{-}=V^{+}=-10 \mathrm{~V}
$$

$$
\begin{aligned}
\frac{-10-V_{\text {in }}}{5 \mathrm{k} \Omega}+\frac{-10-V_{0}}{5 \mathrm{k} \Omega} & =0 \\
-20-V_{\text {in }}-V_{0} & =0 \\
V_{0} & =-V_{\text {in }}-20
\end{aligned}
$$

24. (b)

For transistor Q_{2}, we can calculate the equivalent resistance as

Now,

$$
V_{\mathrm{in}}=V_{\pi}
$$

$\therefore \quad \frac{I}{V_{\mathrm{in}}}=\frac{1}{r_{\pi 2}}+g_{m 2}$
or

$$
R^{\prime}=r_{\pi 2} \| \frac{1}{g_{m 2}}
$$

Now, the circuit can be redrawn as

$$
I=-I_{B 1}-\beta_{1} I_{B 1}
$$

$$
I=-\left(1+\beta_{1}\right) I_{B 1}
$$

Now,

$$
I_{B 1}=\frac{-V}{r_{\pi 1}+R^{\prime} \| R_{2}}
$$

$$
\therefore \quad \frac{V}{I}=\frac{r_{\pi 1}+R^{\prime}| | R_{2}}{\beta_{1}+1}
$$

$$
\therefore \quad R_{\mathrm{in}}=\frac{1}{\beta_{1}+1}\left(r_{\pi 1}+\frac{1}{g_{m 2}}\left\|r_{\pi 2}\right\| R_{2}\right)
$$

$\because \quad$ where, $\beta_{1}=99$

$$
\therefore \quad R_{\mathrm{in}}=\frac{1}{100}\left(r_{\pi 1}+\frac{1}{g_{m 2}}\left\|r_{\pi 2}\right\| R_{2}\right)
$$

25. (a)

In the circuit, the capacitor starts charging from 0 V (as the switch was initially closed) towards the steady state value of 20 V .
Now, when the switch is flipped open, the capacitor will charge upto 20 V .

$$
\therefore \quad V_{c}(t)=V_{c}(\infty)-\left[V_{c}(0)-V_{c}(\infty)\right] \mathrm{e}^{-t / \mathrm{RC}}
$$

$$
\begin{array}{rlrl}
& R C & =1 \times 10^{3} \times 0.01 \times 10^{-6}=10 \mu \mathrm{sec} \\
\therefore \quad V_{c}(t) & =20\left(1-e^{-t / R C}\right)
\end{array}
$$

Voltage at non-inverting amplifier is obtained as

$$
\begin{aligned}
& V^{+}=V_{0} \times \frac{100 \mathrm{k} \Omega}{(10+100) \mathrm{k} \Omega} \\
& V^{+}=V_{0} \times \frac{100}{110}=\frac{V_{0} \times 10}{11}
\end{aligned}
$$

\because Initially V^{-}was equal to -10 V , thus $V_{0}=+5.7 \mathrm{~V}$.
Thus, now capacitor will start charging as soon as the switch is opened.
Thus,

$$
V^{-}=V_{C}-10 \mathrm{~V}
$$

or,
$V_{C}=V^{-}+10 \mathrm{~V}$
now,

$$
V^{-}=V^{+}=\frac{5.7 \mathrm{~V} \times 10}{11} \quad[\because \text { the op-amp will switch }]
$$

thus,

$$
V_{C}=\frac{10 \times 5.7}{11}+10
$$

now, $\quad V_{C}=20\left(1-e^{-t / R C}\right)$
$\therefore \quad 20\left(1-e^{-t / R C}\right)=10+\frac{57}{11}$

$$
1-e^{-t / R C}=\frac{1}{2}+\frac{57}{220}
$$

$$
1-e^{-t / R C}=0.7590
$$

$$
e^{-t / R C}=0.2409
$$

$$
T=14.23 \mu \mathrm{sec}
$$

Hence, the output voltage wave will be,

26. (c)

Now,

$$
g_{m 1}=2 \sqrt{k_{n 1} I_{D_{1}}}=2 \sqrt{0.5 \times 0.2 \times 10^{-6}}=0.632 \mathrm{~mA} / \mathrm{V}
$$

and

$$
g_{m 2}=2 \sqrt{k_{n 2} I_{D_{2}}}=2 \sqrt{(0.2)(0.5) \times 10^{-6}}=0.632 \mathrm{~mA} / \mathrm{V}
$$

Now, drawing the small signal equivalent circuit, we get,

Now,

$$
\begin{equation*}
V_{0}=g_{m 2}\left(R_{S 2}| | R_{L}\right) \cdot V_{g s 2} \tag{i}
\end{equation*}
$$

Also,

$$
\begin{equation*}
V_{g s 2}+V_{0}=-g_{m 1} V_{g s 1} R_{D 1} \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{g s 1}=\frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{S i}} \times V_{i} \tag{iii}
\end{equation*}
$$

Putting values of $V_{g s 1}$ and $V_{g s 2}$ from equation (i) and (iii) in equation (ii), we get

$$
\begin{aligned}
& \frac{V_{0}}{g_{m_{2}}\left(R_{S 2}| | R_{1}\right)}+V_{0}=-g_{m 1} R_{D 1}\left[\frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{S i}}\right] \cdot V_{i} \\
& \therefore \quad \\
& \text { Now, } \quad \begin{aligned}
A_{V} & =\frac{V_{0}}{V_{i}}=\frac{-g_{m 1} g_{m 2} R_{D 1}\left(R_{S 2} \| R_{L}\right)}{1+g_{m 2}\left(R_{S 2} \| R_{L}\right)} \times\left[\frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{S i}}\right] \\
R_{S 2} \| R_{L} & =\frac{8}{3} \mathrm{k} \Omega \\
R_{1} \| R_{2} & =99.8 \mathrm{k} \Omega \approx 100 \mathrm{k} \Omega \\
\therefore \quad A_{v} & =\frac{V_{0}}{V_{i}}=\frac{-(0.632)(0.632)(16.1)(8 / 3)}{1+(0.632)(8 / 3)} \times\left[\frac{100}{104}\right] \\
& \approx-6.14
\end{aligned} .
\end{aligned}
$$

27. (c)

Assuming all the diodes are forward biased,

$$
\begin{array}{ll}
& \begin{aligned}
V_{B} & =-0.7 \mathrm{~V} \\
V_{A} & =0 \mathrm{~V} \\
\therefore & I_{2}
\end{aligned}=\frac{10-0}{10 \mathrm{k}}=1 \mathrm{~mA} \\
\text { and } & I_{1} \\
\therefore & =\frac{-0.7-(-10)}{10 \mathrm{k}}=0.93 \mathrm{~mA} \\
\because & I_{2}
\end{array}=I_{D_{1}}+I_{D_{2}} .
$$

applying KVL in the outer loop, we get,

$$
\begin{aligned}
10 \mathrm{k} I_{2}+0.7+10 \mathrm{k} I_{D_{1}}-20 & =10 \\
10 \mathrm{k}\left(I_{D_{1}}+I_{D_{2}}\right)+10 \mathrm{k} I_{D_{1}} & =30-0.7=29.3 \\
20 \mathrm{k} I_{D_{1}}+10 \mathrm{k} I_{D_{2}} & =29.3
\end{aligned}
$$

$$
\begin{equation*}
2 I_{D_{1}}+I_{D_{2}}=2.93 \mathrm{~mA} \tag{i}
\end{equation*}
$$

also,

$$
\begin{equation*}
I_{D_{1}}+I_{D_{2}}=I_{2}=1 \mathrm{~mA} \tag{ii}
\end{equation*}
$$

from (i) and (ii)

$$
\begin{array}{rlrl}
I_{D_{1}} & =1.93 \mathrm{~mA} \text { and } I_{D_{2}}=-0.93 \mathrm{~mA} \\
\because & I_{D_{2}}+I_{D_{3}} & =0.93 \mathrm{~mA} \\
\Rightarrow & I_{D_{3}} & =-I_{D_{2}}+0.93 \mathrm{~mA}=1.86 \mathrm{~mA}
\end{array}
$$

Here $I_{D_{2}}$ is negative, Hence, our assumption is incorrect.
Therefore, D_{2} is reverse biased
and $\because I_{D_{1}}$ and $I_{D_{3}}$ are positive,
D_{1}, D_{3} are forward biased.
28. (a)

The diode will get forward biased when the negative value of input wave will be applied at the input terminal.

Applying KVL, we get,

$$
\begin{aligned}
-4 \mathrm{~V}+V_{C}-25 \mathrm{~V} & =0 \\
V_{C} & =29 \mathrm{~V} \\
V_{0} & =4 \mathrm{~V}
\end{aligned}
$$

and
For positive cycle

$\therefore \quad V_{0}=29+15=44 \mathrm{~V}$
29. (a)
and
now,

$$
\begin{aligned}
I_{z}+I_{B} & =I_{1} \\
I_{z} & =I_{1}-I_{B} \\
V_{0} & =V_{Z}-V_{B E} \\
& =10-0.7=9.3 \mathrm{~V}
\end{aligned}
$$

$$
I_{E}=\frac{V_{0}}{1 \mathrm{k} \Omega}=\frac{9.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=9.3 \mathrm{~mA}
$$

$$
I_{B}=\frac{I_{E}}{\beta+1}=\frac{9.3}{100}=93 \mu \mathrm{~A}
$$

$$
\begin{array}{ll}
& I_{1}=\frac{20-10}{10 \mathrm{k}}=1 \mathrm{~mA} \\
\therefore \quad & I_{z}=(1000-93) \mu \mathrm{A} \\
& I_{z}=907 \mu \mathrm{~A}
\end{array}
$$

30. (a)

> now,
now,

$$
I_{C}=\alpha I_{E}
$$

$$
\begin{array}{rlrl}
& & \alpha & =\frac{\beta}{1+\beta}=\frac{99}{1+99}=0.99 \\
\therefore & I_{C} & =0.99 \times 0.3=0.297 \mathrm{~mA} \\
\therefore & I_{2}+I_{C} & =5 \mathrm{~mA} \\
& I_{2} & =5 \mathrm{~mA}-I_{C} \\
& =4.703 \mathrm{~mA} \\
\therefore & V_{C} & =I_{2} \cdot R_{C}=4.703 \times 2 \\
\therefore & V_{C} & =9.406 \\
\therefore & V_{C E} & =9.406+0.7=10.1 \mathrm{~V}
\end{array}
$$

