- C	LASS -	res	эт ——		SI.	: 02	SK_EC+EE_E	FGH_	240623
		п	neo			19			
	India's Best Institute for IES, GATE & PSUs Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612								
	חום	217	ΓΔΙ Γ	=1	FCT	R	ONIC	S	
	EL	_EC		ICS			ERING		
	EL	_EC	Date of 1	ICS Fest	6 ENGII :24/06/2	NE 2023	ering 3	_	
AN	EL SWER KEY	_EC	Date of 1	ICS Fest	5 ENGII :24/06/2	NE 2023	ERING 3	-	
AN 1.	EL SWER KEY (b)	_EC	(b)	ICS Fest	6 ENGII : 24/06/2	NE 2023	ERING 3	25.	(b)
AN 1. 2.	EL SWER KEY (b) (c)	_EC > 7. 8.	CTRON Date of 1	1CS Fest 13. 14.	6 ENGII :24/06/2	NE 2023 19. 20.	ERING 3 (b) (d)	 25. 26.	(b) (d)
AN 1. 2. 3.	(b) (c) (b)	EC	CTRON Date of (b) (a) (d)	1CS Fest 13. 14. 15.	6 ENGII : 24/06/2 (c) (d) (c)	NE 2023 19. 20. 21.	ERING 3 (b) (d) (b)	25. 26. 27.	(b) (d) (c)
AN 1. 2. 3. 4.	EL (b) (c) (b) (a)	EC	CTRON Date of 7 (b) (a) (d) (c)	1CS Fest 13. 14. 15. 16.	6 ENGII : 24/06/2 (c) (d) (c) (b)	NE 2023 19. 20. 21. 22.	ERING 3 (b) (d) (b) (a)	25. 26. 27. 28.	(b) (d) (c) (b)
AN 1. 2. 3. 4. 5.	EL (b) (c) (a) (c)	EC	CTRON Date of 7 (b) (a) (d) (c) (b)	ICS Test 13. 14. 15. 16. 17.	6 ENGII : 24/06/2 (c) (d) (c) (b) (a)	NE 2023 19. 20. 21. 22. 23.	ERING 3 (b) (d) (b) (a) (b)	25. 26. 27. 28. 29.	(b) (d) (c) (b) (b)

DETAILED EXPLANATIONS

1. (b)

In J-K flip-flop

J	K	Output
1	0	Set
0	1	Reset
0	0	Hold
1	1	Racearound

2. (c)

A look ahead carry generator is created using combinational circuit.

3. (b)

$$\begin{split} X \oplus Y &= \overline{X \odot Y} = \overline{\overline{X} \overline{Y} + XY} \\ &= \overline{(\overline{X} \overline{Y})} (\overline{XY}) \\ &= (X + Y) (\overline{X} + \overline{Y}) \\ &= \overline{X} + \overline{Y} \qquad (\because X + Y = 1 \text{ which is given}) \end{split}$$

4. (a)

5. (c)

The expression of *Y* can be written as

$$Y = (A)\overline{A}\overline{B} + (B)\overline{A}B + (B)A\overline{B} + (A)AB = \overline{A}B + AB = B$$

6. (b)

Given Count : 1 0 1 1 0 0 1 1 1 1

 \therefore No. of flip flop : 5

7. (b)

> $Y = AB + AC(\overline{AB + AC})$ $= AB + AC(\overline{AB} \cdot \overline{AC})$ $= AB + AC(\overline{A} + \overline{B})(\overline{A} + \overline{C})$ $= AB + AC\overline{B}(\overline{A} + \overline{C}) = AB$

8. (a)

Input of *D* flip flop, $D_n = Q_n \oplus X$ For *D* flip flop output,

 Q_n

$$_{+1} = D_n = Q_n \oplus X$$

Drawing truth table

X	Q_n	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

So,

$$Q_{n+1} = Q_n \text{ for } X = 0$$

and

$$Q_{n+1} = \bar{Q}_n \text{ for } X = 0$$
$$Q_{n+1} = \bar{Q}_n \text{ for } X = 1$$

 \therefore It imitates *T* flip flop

9. (d)

Given number in decimal form = 64

In binary form $\underbrace{\begin{smallmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

In hexadecimal $(4\ 0)_{16}$

 $(4)_{10}$ - $(0100)_2$ For BCD, $(6)_{10}^{10} - (0110)_2^{10}$ $(64)_{10} - (01100100)_{BCD}^{10}$

10. (c)

(-)						
At pulse 1	Input	:	0	1	1	0
	Output	:	1	0	1	1
At pulse 2	Input	:	1	0	1	1
	Output	:	0	1	0	1
At pulse 3	Input	:	0	1	0	1
	Output	:	1	0	1	0
At pulse 4	Input	:	1	0	1	0
_	Output	:	1	1	0	1

11. (b)

Dual slope A/D convertor has the highest accuracy among the given converters.

12. (c)

Now,
$$X > Y$$
 if
(a) $X_2 = 1$
(b) $X_2 = 0$ and $X_1 X_0 > Y_1 Y_0$

 $X_2 = 1$

13. (c)

The above circuit represents a half subtracter constructed using only NAND gates. Thus the truth table can be written as

A	В	Difference (X)	Borrow (Y)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

14. (d)

From figure, $Z = \overline{ABC} + \overline{AB} + A\overline{B} + AB$ $= \overline{A}(\overline{BC} + B) + A(\overline{B} + B)$ $= \overline{A}(\overline{BC} + B) + A$ $= (\overline{A} + A)(A + B + \overline{BC})$ $= (A + [(B + \overline{B})(B + C)]$ = A + (B + C)

Hence option (d) is correct

Then,

So for,

(b)

15. (c)

16.

$$S = \left[\overline{(P+Q)} + \overline{(P+Q)}\right](\overline{P+(P+Q)})$$
Considering, $\overline{P+Q} = X$ and $\overline{P+(\overline{P+Q})} = Y$
Then, $S = (X+Y)Y = XY + Y = Y$
 $S = \overline{P+(\overline{P+Q})} = \overline{P}.(P+Q) = \overline{P}Q$
So for, $S = 1, P = 0, Q = 1$
(b)
From the combinational logic.
Assuming D is input, Q_n is present state.
 Q_{n+1} is the next state, then
 $R = \overline{D \oplus Q}$, $S = D \oplus Q$
Characteristic equation of $R - S$ flip flop
 $Q_{n+1} = S + \overline{R}Q_{in}$
So, $Q_{n+1} = (D \oplus Q_n) + (\overline{D \oplus Q_n})Q_n$
 $= (D \oplus Q_n) + (D \oplus Q_n)Q_n$
 $= (D \oplus Q_n)[1 + Q_n]$
 $= D \oplus Q_n$
For, $D = 0; Q_{n+1} = \overline{Q}_n$
So the circuit functions as a T-flip flop.

So,

For,

So the cir

17. (a)

From given sequential circuit

$$T = Q + \overline{Q}$$
, So, $T = 1$

So output toggles at every clock pulse

 $f_o = 0.5 f_i$:. a = 0.5

18. (d)

In the given circuit

 $D_0 = \overline{A}_1.\overline{A}_0, \ D_1 = \overline{A}_1.A_0, \ D_2 = A_1\overline{A}_0, \ D_3 = A_1A_0$ For first decoder,

$$A_0 = a; A_1 = b$$

 $D_2 = b.\overline{a} \text{ and } D_3 = ab$

India's Best Institute for IES, GATE & PSUs

For second decoder,

$$\begin{array}{rcl} A_{1} &=& D_{2}.D_{3} = b.\overline{a}.a.b = 0\\ A_{0} &=& c\\ D_{0} &=& \overline{A}_{1}\overline{A}_{0} + \overline{A}_{1}A_{0} = \overline{A}_{1} = 1\\ \end{array}$$
 The value of $f(a, \, b, \, c) &=& D_{0} + D_{1} = 1 + 0 = 1 \end{array}$

19. (b)

Let initially output is 1

$$(J_0 = 1, K_0 = 1, J_1 = \overline{Q}_2, K_1 = 1, J_2 = Q_1, K_2 = 1)$$

then

CLK	Q_0	Q_1	<i>Q</i> ₂	Q_0^+	Q_1^+	Q_{2}^{+}	J ₀	K ₀	J_1	K_1	J_2	<i>K</i> ₂	Ζ
Initially	0	0	0										1
1	1	1	0	1	1	0	1	1	1	1	0	1	0
2	0	0	1	0	0	1	1	1	1	1	1	1	0
3	1	0	0	1	0	0	1	1	0	1	0	1	0
4	0	1	0	0	1	0	1	1	1	1	0	1	0
5	1	0	1	1	0	1	1	1	1	1	1	1	0
6	0	0	0	0	0	0	1	1	0	1	0	1	1

It is mod – 6 counter, so output *Z* will be 1 after every 6^{th} clock pulse.

20. (d)

 $F = \overline{D} + \overline{B}C + AB$

Alternatively

$$F = B\overline{D} + \overline{B}CD + ABC + AB\overline{C}D + \overline{B}\overline{D}$$

- $= \overline{D}(B + \overline{B}) + \overline{B}CD + ABC + AB\overline{C}D$
- $= \overline{D} + \overline{B}CD + ABC + AB\overline{C}D$
- $= \overline{D} + \overline{B}CD + AB(C + \overline{C}D)$
- $= \overline{D} + \overline{B}CD + AB[(C + \overline{C})(C + D)]$

$$= \overline{D} + (\overline{B}C + AB)D + ABC$$

 $= (\overline{D} + D)(\overline{D} + \overline{B}C + AB) + ABC$

$$F = \overline{D} + \overline{B}C + AB$$

Now realization

Hence required number of NAND gates : 5

21. (b)

We have the logic function,

$$Z = AB + BC + CA$$

For the function, we form the K-map as shown below:

ABC	00	01	11	10
0	0	0	1	0
1	0	1	1	1

:.
$$Z(A, B, C) = \Sigma m(3, 5, 6, 7)$$

Therefore, during implementation of the function *Z*-using 8 to 1 MUX, inputs I_3 , I_5 , I_6 and I_7 will be at high logic (1) and rest inputs remain at logic (0). Hence option (b) is correct.

22. (a)

	A	В	С	X
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$X(A, B, C) = \Sigma m(1, 2, 4, 5, 6, 7)$$

B,C	00	01	11	10
0	0	1	3	1 2
1	1	1	1	1

$$X = A + \overline{B}C + B\overline{C}$$
$$= A + B \oplus C$$

Alternate Solution:

Consider the circuit of option a

$$\overset{A}{\underset{C}{\longrightarrow}} \overset{P}{\longrightarrow} \overset{P}{\longrightarrow} \overset{X}{\longrightarrow} X$$

1. For B = C

and

and

For $B \neq C$

 $P = B \oplus C = 0$ X = A + 0 = A

i.e. output *X* will equal to *A* when control input *B* and *C* are same:

2.

$$P = B \oplus C = 1$$
$$X = A + 1 = 1$$

i.e. X will remain high when *B* and *C* are different. Hence the circuit meets both requirements.

23. (b)

In ripple counter, total delay time is

	$T_c = nt_d$
Where,	n = number of bits
Here,	n = 4
and	t_d = 10 ns (delay of each FF)
So, we get the wo	orst case delay in ripple counter as
	$T_{c} = 4 \times 10 \text{ ns} = 40 \text{ ns}$

(or)
$$\overrightarrow{R} = 40 \text{ ns}$$

In synchronous counter, all FF's are clocked simultaneously. So its worst delay will be equal to delay of one FF, i.e.

(or)
$$T_c = 10 \text{ ns}$$

 $S = 10 \text{ ns}$

24. (b)

To implement the given function using NAND and NOR gates, we rewrite the given function as

$$Y = ABCD = \overline{ABCD}$$
$$= \overline{\overline{AB} + \overline{CD}}$$

So the equivalent circuit for the Boolean function is

Therefore, two NAND gates and one NOR gate is required to implement Y = ABCD.

25. (b)

From the given circuit we obtain the expression for the output X as:

$$X = x\overline{y}z + \overline{w}xz + \overline{w}yz$$

Drawing the K-map for above expression:

By grouping the 1's in K-map, we get the minimized expression as,

$$X = x\overline{y}z + \overline{w}yz$$

 $\therefore \overline{w}xz$ i.e. gate-2 is redundant.

26. (d)

From the circuit diagram, we deduce that LED will glow when Z = low (0) and Z will be low only when X or Y or both will be high. Now, we consider the different input conditions as

1. For
$$A = B = 1$$
;
 $X = 1 \text{ and } Y = 0$
 $\Rightarrow \qquad Z = 0$; LED glows
2. For $A = B = 0$;
 $X = 0 \text{ and } Y = 1$
 $\Rightarrow \qquad Z = 0$; LED glows
3. For $A = 0$. $B = 1$;
 $X = 0 \text{ and } Y = 0$
 $\Rightarrow \qquad Z = 1$; LED does not glows
4. For $A = 1$, $B = 0$;
 $X = 0 \text{ and } Y = 0$
 $\Rightarrow \qquad Z = 1$; LED does not glows

27. (c)

From the circuit, we obtain the output function as

$$f = \overline{w}_{3}(w_{1} + \overline{w}_{1}w_{2}) + w_{3}(\overline{w}_{1} + w_{1}\overline{w}_{2})$$

$$= \overline{w}_{3}(w_{1} + w_{2}) + w_{3}(\overline{w}_{1} + \overline{w}_{2})$$

$$= \overline{w}_{3}w_{1} + \overline{w}_{3}w_{2} + w_{3}\overline{w}_{1} + w_{3}\overline{w}_{2}$$

$$= (w_{2} \oplus w_{3}) + (w_{1} \oplus w_{3})$$

28. (b)

In the given circuit, the output *Z* is

$$Z = \overline{(\overline{A} + \overline{B})} = AB$$

Truth table is as given below:

	$B \oplus X$	$B\overline{X}$	AX	AX				
Х	J_A	K_A	J_B	K_B	Α	В	Ζ	
-	-	-	-	-	0	0	0	
0	0	0	0	0	0	0	0	
1	1	0	0	0	1	0	0	T 1/1 1
1	1	0	1	1	1	1	1	Initial
0	1	1	0	0	0	1	0	
0	1	1	0	0	1	1	1	

Hence the sequence of output Z is 00101.

29. (b)

The given circuit represents a 3-bit counter. So the count can be represented as

Clk	<i>Q</i> ₂	<i>Q</i> ₁	Q_0	
Initially	0	0	0	
1	0	0	1	-
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	\Rightarrow 5th clock pulse
6	1	1	0	-
7	1	1	1	
$Y = Q_2$	$\oplus Q_1 \in$	$\mathbb{P}Q_0$		

...

$$= 1 \oplus 0 \oplus 1 = 0$$

30. (d)

Test for Lockout

Present State			Present Input			Nest State		
Q ₂	<i>Q</i> ₁	Q ₀	J ₂ K ₂	J ₁ K ₁	J ₀ K ₀	<i>Q</i> ₂	<i>Q</i> ₁	<i>Q</i> ₀
0	0	0	1 0	1 1	0 1	1	1	0
0	0	1	1 1	1 1	0 1	1	1	0
0	1	0	1 0	1 1	1 1	1	0	1
1	0	1	1 1	1 0	0 0	0	1	1

Hence, the counter does not enter into lockout state.