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DE TAILED EXPL ANATIONS

1.1.1.1.1. (c)(c)(c)(c)(c)
Commutative for multiplication of matrices does not hold.

AB ≠ BA

2.2.2.2.2. (b)(b)(b)(b)(b)
Exact weight cannot be written but there will be limit to measure the weight.
Therefore it is continuous.
Number of questions in a test is finite and can be find easily that number of questions attempted.
Hence it is discrete.

3.3.3.3.3. (c)(c)(c)(c)(c)

A =
1 1

(A A ) (A A ) B C
2 2

+ ′ + − ′ = +

[∵ Any square matrix can be expressed as the sum of symmetric and skew-symmetric matrices]
Here B is symmetric and C is skew-symmetric, B′ = B, C′ = – C.

4.4.4.4.4. (b)(b)(b)(b)(b)

1
lim ( )f

−→x
x =

1
lim ( 1) 0

−→
− =

x
x

1
lim ( )f

+→x
x = 3

1
lim ( 1) 0

+→
− =

x
x

Also f (1) = 0

Thus
1

lim ( )f
−→x

x =
1

lim ( ) (1)f f
+→

=
x

x

⇒ f is continuous at x = 1 and Lf′(1) = 2, Rf′(1) = 1
⇒ f is not differentiable at x = 1

5.5.5.5.5. (d)(d)(d)(d)(d)
rank of [AB] ≤ rank of [A]
rank of [AB] ≤ rank of [B]
rank of [AB] ≤ min[rank of A, rank of B]

6.6.6.6.6. (b)(b)(b)(b)(b)
eigen values of (A + 5I) are α + 5 and β + 5

eigen values of (A + 5I)–1 = 
1 1

and
5 5α + β +

7.7.7.7.7. (c)(c)(c)(c)(c)
Eigen values of A = Eigen value of AT

∴
4 1

1 4

− λ 
 − λ 

= 0 ⇒ (5 – λ) (3 – λ) = 0

⇒ λ = 3, 5 are eigen values
∴ (c) is correct.
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8.8.8.8.8. (b)(b)(b)(b)(b)
A is skew-symmetric,
⇒ A = –AT

Now, (A·A)T = AT · AT = (–A) · (–A) = A ·  A
∴ A·A is a symmetric matrix.

9.9.9.9.9. (b)(b)(b)(b)(b)

λ = np = 
1

100 1
100

× =

P(X > 2) = 1 – (P (X = 0) + P (X = 1))

P(X = 0) =
0

0!
e

e
−λ

−λ⋅ λ =

P(X = 1) = 1!
e e

−λ
−λλ′ = ⋅ λ

P(X > 2) = 1 1 2 2
1 (2)

e
e

e e
− − −

− = =

10.10.10.10.10. (b)(b)(b)(b)(b)
The tree diagram for above problem, is shown below:

1/2

1/2

Bag1

Bag2

3/10

4/12
Red

Red

P (bag1Red) = ( )
( )

bag1 Red
Red

P
P

∩
 = 

1/ 2 3 /10
1/ 2 3 /10 1/ 2 1/ 3

×
× + ×

 = 
3 / 20

0.317
3 / 20 1/ 6

=
+

11.11.11.11.11. (c)(c)(c)(c)(c)
P (x) = x5 + x + 2

It has a real root at x = –1
⇒ P (x) = (x4 – x3 + x2 – x + 2) (x + 1)
Now, x4 – x3 + x2 + x + 2 will give other 4 roots
To find roots,
⇒ x4 – x3 + x2 – x + 2 = 0
⇒ x3 (x – 1) + x(x – 1) + 2 = 0
⇒ x (x2 + 1) (x – 1) + 2 = 0
In the above expression, x2 + 1 is always positive. So, either ‘x ’ or ‘x – 1’ should be negative in order to
satisfy the equation.
For  x > 1, both (x) and (x – 1) are positive and,
For x < 0, both (x) and (x – 1) are negative
∴ x should lie within 0 and 1 in order to have real roots.
As x ∈ (0, 1)
⇒ |x | < 1
⇒ |x2 + 1| < 2, |x | < 1 and | x – 1| < 1
∴ The product of these three will be less than 2 and hence, no real value of ‘x ’ can satisfy the equation

x4 – x3 + x 2  – x + 2 = 0
∴ The equation will have four  imaginary roots apart from one real roots.
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12.12.12.12.12. (a)(a)(a)(a)(a)
To obtain maximum value of f (x), first f ′(x) should be equated to zero.
⇒ f ′(x) = 6x2 – 6x – 36 = 0
⇒ x2 – x – 6 = 0
⇒ (x – 3) (x + 2) = 0
∴ f ′(x) = 0 at x = 3 and –2
Now, f ″(x) = 12x – 6

f ″(3) = 30 > 0
at x = 3, there is local minima
and f ″(2) = –30 < 0
∴ at x = –2, a local maxima is observed.

13.13.13.13.13. (c)(c)(c)(c)(c)

Suppose y =
46

lim
1

+

→∞

+ 
  +

x

x

x
x

⇒ y =

( )5 4
1 1

55
lim 1

1

 +
 + +  

→∞

 
  +  +   

x
x x

x x

⇒ ln y =

1
55( 4) 5lim ln 1

( 1) 1

x +

→∞

+  + + + x

x
x x

...(i)

5( 4)
lim

( 1)→∞

+
x

x
x +  is in the form of 

∞
∞

 and 

1
55limln 1

1

+

→∞

 + + 

x

x x
 is in the form of 00.

Calculating the limits of both terms separately

( 4)
lim5

( 1)→∞

+
+x

x
x

=

4
1

(1 0)
lim 5 5

1 (1 0)
1

→∞

 +   +=
+ +  

x

x

x

 = 5

14.14.14.14.14. (c)(c)(c)(c)(c)

2dyy x
dx

 +   =
3dy1

dx
 +   

the maximum power of 
dy
dx

 is 3.

15.15.15.15.15. (d)(d)(d)(d)(d)

[A]2 =
0

1 1

α 
 
 

⋅
0

1 1

α 
 
 

 = 
2 0

1 1

 α
 
α + 

α2 = 1 ; α + 1 = 5
α = ±1 ; α = 4

Unique value of α is not possible.

16.16.16.16.16. (c)(c)(c)(c)(c)
Required probability is given by

P(1 ≤ x ≤ 3) =
3

1

( )f d∫ x x  = 
3

2

1

2e d−∫ x x =
32

1

2
2

e− 
 − 

x
 = e–2 – e–6

∴ Option (c) is correct.
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17.17.17.17.17. (a)(a)(a)(a)(a)

( ) ( ) ( ) ( )
lim

a

g f a g a f
a→

−
−x

x x
x

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
lim

a

g f a g a f a g a f a g a f
a→

− ⋅ + ⋅ − ⋅
−x

x x
x

( ) [ ( ) ( )] ( )[ ( ) ( )]
lim

a

f a g g a g a f f a
a→

⋅ − − −
−x

x x
x

( ) [ ( ) ( )] ( )[ ( ) ( )]
lim lim

a a

f a g g a g a f f a
a a→ →

⋅ − −
−

− −x x

x x
x x

f(a) × g′(a) – g(a) × f ′(a) = 2 × 2 – 1 × (–1)
= 5

Alternate SolutioAlternate SolutioAlternate SolutioAlternate SolutioAlternate Solutionnnnn :::::
Applying L’Hospitals rule

( ) ( ) ( ) ( )
lim

1a

g f a g a f
→

′ − ′
x

x x

f(a) × g′(a) – g(a) × f ′(a) = 2 × 2 – 1 × (–1)
= 5

18.18.18.18.18. (b)(b)(b)(b)(b)
np = 3

npq =
2

2 3 9
2 4

 σ = =  

from here q =
3
4

p =
3 1

1
4 4

 − =  

3 1
4 4

n × × =
9
4

n = 12

19.19.19.19.19. (b)(b)(b)(b)(b)
(i) E(X + 2Y) = E(X) + 2E(Y) = 1 + 2 × 2 = 5
(ii) Cov(X, Y) = E(XY) – E(X) E(Y)
⇒ E(XY) = Cov(XY) + E(X) E(Y) = 1 + 1 × 2 = 3
(iii) Var[X – 2Y + 1] = Var(X – 2Y) = Var(X) + (–2)2 Var(Y) – 4 Cov(X, Y)

= 1 + 4 × 2 – 4 = 5
∴ p = 5, q = 3, r = 5
∴ pq + r = 5 × 3 + 5 = 20

20.20.20.20.20. (a)(a)(a)(a)(a)

Required probability = 
4 4
52 52

×  = 
1 1

13 13
×
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21.21.21.21.21. (c)(c)(c)(c)(c)
The matrix which has 0 determinant will not be invertible.
determinant of A1, |A1| = 3 × 2 – 4 × 1 = 2
determinant of A2, |A2| = 1[–3 – 0] + 0 + 4 [0 + 1] = 1
determinant of A3, |A3| = 1 (20 – 14) – 3(8 – 8) +1 (14 – 20) = 0
determinant of A4, |A4| = 2(0 – 1) –3 (6 – 3) + 1 (3 – 0) = –2 – 9 + 3 = –8

22.22.22.22.22. (c)(c)(c)(c)(c)

The matrix formed by the coefficients is 

1 2
1 2 1
2 1

a

a

 
 
 
  

Determinant = 2a2 – 2a – 4

∴ D = 0 for a = 2 or a = –1

(A)(A)(A)(A)(A) If D ≠ 0, then the system will have unique solution.

(B)(B)(B)(B)(B) If a = 2, the matrix formed by the coefficients is 

2 1 2
1 2 1
2 1 2

 
 
 
  

The rank of matrix is 2.

Considering ‘z ’ as side unknown.

The characteristic determinant will be 

2 1 0
1 2
2 1 0

b
 
 
 
  

The determinant of this is 0.

The system will have infinite solutions when a = 2.

(C)(C)(C)(C)(C) If a = –1, the matrix formed by the coefficients is 

1 1 2
1 2 1
2 1 1

− 
 
 
 − 

Its rank is 2.

Considering ‘z ’ as side unknown.

The characteristic matrix is 

1 1 0
1 2
2 1 0

b
− 

 
 
  

The determinant of this matrix is 3b.

The system will have no solution if b ≠ 0

∴ For a = –1 and b ≠ 0, the system will have no solution.

23.23.23.23.23. (d)(d)(d)(d)(d)
Let f(x) = [|sin x| + |cos x|]
as |sin x| + |cos x| ≥ 1

and |sin x| + |cos x| ≤ 2 21 1+

⇒ 1 ≤ sinx cosx 2 + ≤ 

Thus, [|sin x| + |cos x|] = 1

∴
2

0
sinx cosx dx

π
 + ∫ =

2

0
1.dx 2

π
= π∫
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24.24.24.24.24. (c)(c)(c)(c)(c)
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
Since P(A  ∩ B) = p(A) p(B) (not necessarily equal to zero).
So, P(A ∪ B) = P(A) + P(B) is false.

26.26.26.26.26. (a)(a)(a)(a)(a)
P2 + 2P + I = P2 + 2PI + I2

= (P + I)2

Eigen values of P are –1, 
1
2

, 3

I3×3 = 

1 0 0
0 1 0
0 0 1

 
 
 
  

 ⇒ eigen values of I3×3 are 1, 1, 1

Eigen values of (P + I) are –1 + 1, 
1
2

+ 1, 3 + 1

= 0, 
3
2

, 4

Eigen values of (P + I)2 are (0)2, 
23

2
 
  

, (4)2 = 0, 
9
4

, 16

27.27.27.27.27. (d)(d)(d)(d)(d)

Standard deviation = variance  = 
2( )

12
β − α

here β = 3, α = 1 = 
22 1

12 3
=

28.28.28.28.28. (c)(c)(c)(c)(c)
The system may be written in matrix form as

1

2

3

1 3 8
1 4 3
1 3 4

−   
  
  
     

x
x
x

=

4
2
1

 
 − 
  

A =

1 3 8
1 4 3
1 3 4

− 
 
 
  

LU = A = 

1 3 8
1 4 3
1 3 4

− 
 
 
  

�11 = 1, �21 = �, �31 = �
�11 u12 = 3 ⇒ u12 = 3,

�21 u12 + �22 = 4 ⇒ �22 = 4 – 1.3 = 1
�31 u12 + �32 = 3 ⇒ �32 = 3 – 1 × 3 = 0

�11 u13 = –8 ⇒ u13 = 
8
1

−
 = –8
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�21 u13 + �22 u23 = 3 ⇒ u23 = 11
�31 u13 + �32 u23 + �33 = 4 ⇒ �33 = 12

∴ L =

1 0 0
1 1 0
1 0 12

 
 
 
  

 and U = 

1 3 8
0 1 11
0 0 1

− 
 
 
  

29.29.29.29.29. (a)(a)(a)(a)(a)
Given that, even number twice than an odd number

P (showing even number) =
2
3

P (showing odd number) = 1
3

Sum of two numbers are odd if first is even and second numbers is odd or vice versa.

P (sum of two number odd) =
2 1 2
3 3 3 3

1
× + ×  = 

2 2
9 9

+  = 
4
9

 = 0.444

30.30.30.30.30. (d)(d)(d)(d)(d)
AX = B

1 1 1
1 2 5
2 3

y
z

   
   
   
   λ   

x
=

6
10

 
 
 
 µ 

C = (A, B) = 

1 1 1 : 6
1 2 5 : 10
2 3 :

 
 
 
 λ µ 

After performing R2 ← R2 – R1 and R3 ← R3 – 2R1

C =

1 1 1 : 6
0 1 4 : 4
0 1 2 : 12

 
 
 
 λ − µ − 

After performing R3 ← R3 – R2

C =

1 1 1 : 6
0 1 4 : 4
0 0 6 : 16

 
 
 
 λ − µ − 

Since R(A) = R(C) for unique solution
So λ – 6 ≠ 0, λ ≠ 6 and µ – 10 ≠ 0, µ ≠ 16.
For no solution R(A) ≠ R(C) then R(A) = 2 and R(C) = 3

λ – 6 = 0
⇒ λ = 6 and µ – 16 ≠ 0 ⇒ µ ≠ 16
For infinite solution R(A) = R(C) = 2
then λ – 6 = 0 and µ – 16 = 0

λ = 6 and µ = 16
So all of options are true.


