CLASS TEST

 India's Best Institute for IES, GATE \& PSUs
 Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
 Web: www.madeeasy.in
 E-mail: info@madeeasy.in
 Ph: 011-45124612
 REINFORCED CEMENT CONCRETE
 CIVIL ENGINEERING
 Date of Test : 14/06/2023

ANSWER KEY

1. (d)
2. (c)
3. (a)
4. (b)
5. (b)
6. (a)
7. (b)
8. (d)
9. (c)
10. (b)
11. (b)
12. (b)
13. (b)
14. (b)
15. (d)
16. (b)
17. (d)
18. (c)
19. (d)
20. (a)
21. (d)
22. (a)
23. (a)
24. (c)
25. (b)
26. (b)
27. (a)
28. (d)
29. (a)
30. (c)
31. (a)

Given: $B=200 \mathrm{~mm}, d=500 \mathrm{~mm}, l_{\text {eff }}=6 \mathrm{~mm}$, Total load $=20 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
& \text { Factored load }=1.5 \times 20=30 \mathrm{kN} / \mathrm{m} \\
& \qquad(\mathrm{BM})_{\max }=\frac{w l_{e f f}^{2}}{8}=\frac{30 \times 6^{2}}{8}=135 \mathrm{kNm}
\end{aligned}
$$

Maximum bending moment capacity of balanced beam (For Fe415)

$$
\begin{aligned}
M_{u, l i m} & =0.138 f_{c k} B d^{2} \\
& =0.138 \times 25 \times 200 \times 500^{2} \times 10^{-6} \\
& =172.5 \mathrm{kNm} \\
(\mathrm{BM})_{\max } & <M_{u, \text { lim }}
\end{aligned}
$$

\therefore Under reinforced section is provided.
3. (b)

$$
\begin{aligned}
\text { Long term, } m_{l} & =\frac{280}{3 \sigma_{c b c}}=\frac{280}{3 \times 8.5} \simeq 11 \\
\text { Short term, } m_{s} & =\frac{E_{s}}{E_{c}}=\frac{2 \times 10^{5}}{5000 \sqrt{25}}=8 \\
\frac{m_{l}}{m_{s}} & =\frac{11}{8}=1.375 \\
m_{l} & =1.375 m_{s}
\end{aligned}
$$

4. (b)

As per IS-456:2000; Table - 3 and table -16 , nominal cover $\ngtr 30 \mathrm{~mm}$.
and according to clause 26.4.2.1 of IS-456 : 2000, nominal cover $\nless 40 \mathrm{~mm}$ for column any case.
So, here, answer will be 40 mm .
6. (b)

As per yield line theory, (Inelastic analysis)

$$
\begin{aligned}
\mathrm{BM}_{\max } & =\frac{w_{u} R^{2}}{6} \\
12 & =\frac{w_{u} \times 2^{2}}{6} \\
w_{u} & =18 \mathrm{kN} / \mathrm{m}^{2} \\
\text { Working load } & =\frac{18}{1.5}=12 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Note: As per elastic theory, $\mathrm{BM}_{\max }=\frac{3}{16} w_{u} R^{2}$
8. (b)

Maximum spacing for vertical stirrups, $k_{1}=0.75 d$ and for inclined stirrups, $k_{2}=d$

So,

$$
\frac{k_{1}}{k_{2}}=0.75
$$

9. (b)

$$
r=\frac{l_{y}}{l_{x}}=\frac{4}{3}
$$

Maximum shear force along larger edge,

$$
F_{L}=\frac{w_{u} l_{x} \times r}{2+r}=\frac{12 \times 3 \times \frac{4}{3}}{2+\frac{4}{3}}=\frac{48 \times 3}{10}=14.4 \mathrm{kN} / \mathrm{m}
$$

Maximum shear force along shorter edge,

$$
\begin{aligned}
F_{S} & =\frac{w_{u} l_{x}}{3}=\frac{12 \times 3}{3}=12 \mathrm{kN} / \mathrm{m} \\
\frac{F_{L}}{F_{S}} & =\frac{14.4}{12}=1.2
\end{aligned}
$$

10. (d)

- Lap length of reinforcement in tension shall not be less than 30ϕ.
- If three bars are bundled together, development length shall be increased by 20%.
- If 2 bars are bundled then 10% if 3 bars are bundled then 20% and if 4 bars are bundled then 33%.

11. (a)

For $50 \mathrm{~m}^{3}$ of concrete volume, we need to consider 4 number of samples.
Above $50 \mathrm{~m}^{3}$, one addition sample is required.
\therefore For $206 \mathrm{~m}^{3}$ concrete,
Number of samples required $=4+1+1+1+1=8$
12. (a)

Effective bending moment due to torsion,

$$
M_{t}=\frac{T_{u}}{1.7}\left(1+\frac{D}{b}\right)=\frac{140}{1.7}\left(1+\frac{750}{350}\right)=258.82 \mathrm{kNm} \simeq 259 \mathrm{kNm}
$$

Equivalent bending moment at bottom is,

$$
M_{e}=M_{t}+M_{u}=259+200=459 \mathrm{kN}-\mathrm{m}
$$

13. (a)

Width of web,

$$
\begin{aligned}
b_{w} & =250 \mathrm{~mm} \\
d & =500-40=460 \mathrm{~mm}
\end{aligned}
$$

Effective depth,

$$
\tau_{v}=\frac{V_{u}}{b_{w} d}=\frac{200 \times 1000}{250 \times 460}=1.74 \mathrm{~N} / \mathrm{mm}^{2}
$$

Design shear stress,

$$
\begin{aligned}
\tau_{u s} & =\tau_{v}-\tau_{c} \\
& =1.74-0.62=1.12 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

14. (d)

The given value are as follows:
$D_{f}=120 \mathrm{~mm}, b_{f}=900 \mathrm{~mm}, b_{w}=300 \mathrm{~mm}, d=600 \mathrm{~mm}$
For Fe415, $\quad\left(x_{u}\right)_{\lim }=0.48 d=0.48 \times 600=288 \mathrm{~mm}$
Assuming neutral axis lies in the flange (i.e., $x_{u}<D_{f}$)

$$
\begin{aligned}
x_{u} & =\frac{0.87 f_{y} A_{s t}}{0.36 f_{c k} b_{f}}=\frac{0.87 \times 415 \times 4 \times \frac{\pi}{4} \times 25^{2}}{0.36 \times 20 \times 900} \\
& =109.4 \mathrm{~mm}<120 \mathrm{~mm}\left(=D_{f}\right)
\end{aligned}
$$

\therefore Our assumption is correct.

$$
\begin{aligned}
\therefore \quad M_{u} & =0.36 f_{c k} b_{f} x_{u}\left(d-0.42 x_{u}\right) \\
& =0.36 \times 20 \times 900 \times 109.4(600-0.42 \times 109.4) \mathrm{Nmm}=392.77 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

15. (b)

For solid slabs, to control deflection, span to overall depth ratios are given as:

	Mild steel	HYSD
Simply supported slab	35	28
Continuous slab	40	32

16. (c)

Value of partial safety factor $\left(\gamma_{f}\right)$ for loads under various load combinations:

Load combination	Limit state of collapse			Limit state of sericieability		
	DL	IL	WL/EL	DL	IL	WL/EL
DL + IL	1.5	1.5		1	1	
DL + WL/EL	1.5 or 0.90	-	1.50	1	-	1
DL + IL + WL/FL	1.2	1.2	1.2	1.0	0.8	0.8

17. (a)

$$
\begin{aligned}
& \text { Let, } \\
& A_{c}=\text { Area of concrete } \\
& \frac{75}{500}=\frac{y}{500-x_{u}} \\
& \Rightarrow \quad y=75\left(\frac{500-x_{u}}{500}\right)
\end{aligned}
$$

Width of section at neutral axis i.e., $b_{N A}=250+2 y$

$$
b_{N A}=250+150\left(\frac{500-x_{u}}{500}\right)
$$

Average width of beam section in compression

$$
\begin{aligned}
& =\frac{1}{2}\left(400+b_{N A}\right) \\
& =\frac{1}{2}\left[650+150\left(\frac{500-x_{u}}{500}\right)\right] \\
& =\left(400-0.15 x_{u}\right) \\
C & =T \\
\Rightarrow \quad 0.36 f_{c k} b_{\text {avg }} x_{u} & =0.87 f_{y} A_{s t} \\
\Rightarrow 0.36 \times 25 \times\left(400-0.15 x_{u}\right) x_{u} & =0.87 \times 415 \times 1473 \\
\Rightarrow x_{u}{ }^{2}-2666.7 x_{u}+393945.67 & =0 \\
\therefore \quad x_{u} & =157 \mathrm{~mm}=15.7 \mathrm{~cm}
\end{aligned}
$$

18. (d)

Given: $h=300 \mathrm{~mm}, L=15 \mathrm{~m}, y=130 \mathrm{~mm}$,
Equation of parabolic cable is

$$
\begin{array}{rlrl}
y & =\frac{4 h x(l-x)}{l^{2}} \\
& & & \\
\Rightarrow & 0.13 & =\frac{4(0.3)(x)(15-x)}{15^{2}} \\
\Rightarrow & 1.2 x^{2}-18 x+29.25 & =0 \\
\therefore & & x & =1.85 \mathrm{~m}
\end{array}
$$

19. (b)

Based on no tension at bottom

$$
\begin{align*}
& \frac{P}{A}-\frac{M}{Z}=0 \tag{i}\\
& \frac{P}{A}+\frac{M}{Z}=40 \tag{ii}
\end{align*}
$$

From equation (i) and equation (ii)

$$
\begin{array}{rlrl}
& & \frac{2 M}{Z} & =40 \\
\Rightarrow & \frac{2 M}{\left(\frac{B D^{2}}{6}\right)} & =40 \\
\Rightarrow & M & =\frac{40 \times 450 \times 650^{2}}{6} \times \frac{1}{2} \\
\Rightarrow & M & =633.75 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{array}
$$

20. (c)

Maximum spacing between lateral ties is 300 mm .

Strain diagram
21. (b)
$\because D>400 \mathrm{~mm}$ and column is helically reinforced, so
As per IS 456 : 2000,
$\therefore \quad P_{u}=\left[0.4 f_{c k} A_{c}+0.67 f_{y} A_{s c}\right] \times 1.05$
where $\quad A_{c}=$ Area of concrete

$$
=A_{g}-A_{s c}
$$

$A_{s c}=$ Area of steel in compression
$A_{g}=$ Gross cross-sectional area of compression member
5% increment in load carrying capacity as it is helically reinforced.

$$
\begin{array}{ll}
\therefore & P_{u}=1.05\left[0.4 \times 25 \times\left(\frac{\pi}{4} \times 500^{2}-8 \times \frac{\pi}{4} \times 20^{2}\right)+0.67 \times 500 \times \frac{\pi}{4} \times 8 \times 20^{2}\right] \times 10^{-3} \\
\Rightarrow & P_{u}=1.05[1938362.667+841946.83] \times 10^{-3} \\
\Rightarrow & P_{u}=2919.32 \mathrm{kN} \simeq 2920 \mathrm{kN}(\text { say })
\end{array}
$$

22. (d)

For axially loaded column,

$$
\begin{aligned}
e_{\min } & =\max \left\{\begin{array}{l}
\frac{L}{500}+\frac{B \text { or } D}{30}<0.05(B \text { or } D) \\
20 \mathrm{~mm}
\end{array}\right. \\
& =\max \left\{\begin{array}{l}
\frac{3000}{500}+\frac{400}{30}=19.33<0.05(B \text { or } D)=20 \mathrm{~mm} \\
20 \mathrm{~mm}
\end{array}\right. \\
\therefore \quad P_{u} & =0.4 f_{c k} A_{c}+0.67 f_{y} A_{s c} \\
P_{u} & =0.4 f_{c k}\left[A_{g}-A_{s c}\right]+0.67 f_{y} A_{s c} \\
A_{c} & =\text { Area of concrete } \\
A_{g} & =\text { Gross area of column } \\
A_{s c} & =\text { Area of compression steel } \\
1650 \times 10^{3} & =0.4 \times 20\left[400^{2}-A_{s c}\right]+0.67(500) A_{s c} \\
1650 \times 10^{3} & =1280000-8 A_{s c}+335 A_{s c} \\
A_{s c} & =1131.498 \mathrm{~mm}^{2} \simeq 1131.50 \mathrm{~mm}^{2}
\end{aligned}
$$

But as per IS 456, $\left(A_{s c}\right)_{\text {min }}=0.8 \%$ of cross-sectional area

$$
\begin{array}{rlrl}
& =\frac{0.8}{100} \times 400^{2}=1280 \mathrm{~mm}^{2} \\
\therefore \quad & A_{s c} & =1280 \mathrm{~mm}^{2}
\end{array}
$$

23. (c)

Stress in concrete at the level of tendon

$$
\begin{aligned}
f_{c} & =\frac{P}{A}+\frac{P e^{2}}{I} \\
& =\frac{200 \times 10^{3}}{150 \times 250}+\frac{200 \times 20^{2} \times 10^{3}}{\frac{150 \times 250^{3}}{12}} \\
& =5.743 \mathrm{MPa}
\end{aligned}
$$

Loss of prestress due to elastic deformation

$$
\Delta f_{s}=\frac{E_{s}}{E_{c}} \times f_{c}=\frac{2.1 \times 10^{5}}{3.0 \times 10^{4}} \times 5.743=40.20 \mathrm{MPa}
$$

24. (a)

Required footing area $=\frac{1.1 P}{q_{u}}$
where
$P=$ Column load
Self-weight of footing and backfill soil considered is 10% of column load.

$$
\begin{array}{rlrl}
\therefore & A & =\frac{1.1 \times 2000}{210}=10.48 \mathrm{~m}^{2} \\
\therefore & \frac{L}{B} & =\frac{600}{400}=\frac{3}{2} \\
\Rightarrow & L \times B & =10.48 \\
\therefore & \frac{3}{2} B \times B & =10.48 \\
& & B & =2.64 \mathrm{~m} \\
\text { and } & \mathrm{L} & =3.96 \mathrm{~m}
\end{array}
$$

Hence, nearest answer is option (a).
25. (b)

We know, maximum diameter of steel $=\frac{\text { Slab thickness }}{8}$
For minimum thickness of slab, we have to use minimum size of reinforcement.
So, Minimum thickness $=8 \times(\mathrm{min}$. dia of $r / f)=8 \times 12=96 \mathrm{~mm}$
26. (b)

Loss of shrinkage of concrete in post-tensioned PSC beam

$$
\begin{aligned}
& =\frac{\left(2 \times 10^{-4}\right) E_{s}}{\log (T+2)}=\frac{\left(2 \times 10^{-4}\right) \times\left(2 \times 10^{5}\right)}{\log (8)}=44.29 \mathrm{~N} / \mathrm{mm}^{2} \\
\% \text { loss } & =\frac{44.29}{1000} \times 100=4.429 \% \simeq 4.43 \%
\end{aligned}
$$

27. (d)

- Critical section for one-way shear is at distance ' d ' from the face of the column.
- Critical section for maximum bending moment under masonary wall is located at mid-way between the face and middle of wall.

28. (a)

$$
\begin{aligned}
& \delta=\left(1+\frac{3 P_{u}}{f_{c k} B D}\right) \leq 1.5=\left(1+\frac{3 \times 1.5 \times 500 \times 10^{3}}{25 \times 300 \times 500}\right) \leq 1.5 \\
& \delta=1.6 \ngtr 1.5 \\
& \delta=1.5
\end{aligned}
$$

30. (c)
31. Here the concrete in the test specimen is subjected to a state of compression (and not tension).
32. Factors such as cracking and dowel forces, which lower the bond resistance of a flexural member, are not present in a concentric pull out test.
33. Friction at the bearing on the concrete offers some restraint against splitting.
