CLASS TEST						S.No	S.No. : 01 IG_CE_B+D_140623				
REESS MADE EASY											
India's Best Institute for IES, GATE & PSUs											
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612											
REINFORCED CEMENT CONCRETE											
CIVIL ENGINEERING											
Date of Test : 14/06/2023											
AN	SWER KEY	>									
1.	(d)	7.	(c)	13.	(a)	19.	(b)	25.	(b)		
2.	(a)	8.	(b)	14.	(d)	20.	(c)	26.	(b)		
	(b)	9	(b)	15.	(b)	21.	(b)	27.	(d)		
3.	(0)	J .									
3. 4.	(b)	10.	(d)	16.	(c)	22.	(d)	28.	(a)		
3. 4. 5.	(b) (d)	10. 11.	(d) (a)	16. 17.	(c) (a)	22. 23.	(d) (c)	28. 29.	(a) (b)		

2. (a)

Given: B = 200 mm, d = 500 mm, $l_{eff} = 6$ mm, Total load = 20 kN/m

Factored load = $1.5 \times 20 = 30 \text{ kN/m}$

$$(BM)_{max} = \frac{w l_{eff}^2}{8} = \frac{30 \times 6^2}{8} = 135 \text{ kNm}$$

Maximum bending moment capacity of balanced beam (For Fe415)

$$\begin{split} M_{u,lim} &= 0.138 \ f_{ck} B d^2 \\ &= 0.138 \times 25 \times 200 \times 500^2 \times 10^{-6} \\ &= 172.5 \ \text{kNm} \\ (\text{BM})_{\text{max}} < M_{u,lim} \end{split}$$

 \therefore Under reinforced section is provided.

3. (b)

Long term,
$$m_l = \frac{280}{3\sigma_{cbc}} = \frac{280}{3 \times 8.5} \simeq 11$$

Short term, $m_s = \frac{E_s}{E_c} = \frac{2 \times 10^5}{5000\sqrt{25}} = 8$
$$\frac{m_l}{m_s} = \frac{11}{8} = 1.375$$
 $m_l = 1.375 m_s$

4. (b)

As per IS-456:2000; Table - 3 and table -16, nominal cover \Rightarrow 30 mm.

and according to clause 26.4.2.1 of IS-456 : 2000, nominal cover \neq 40 mm for column any case. So, here, answer will be 40 mm.

6. (b)

As per yield line theory, (Inelastic analysis)

$$BM_{max} = \frac{w_u R^2}{6}$$

$$12 = \frac{w_u \times 2^2}{6}$$

$$w_u = 18 \text{ kN/m}^2$$
Working load = $\frac{18}{1.5} = 12 \text{ kN/m}^2$

Note: As per elastic theory, $BM_{max} = \frac{3}{16}w_u R^2$

8. (b)

Maximum spacing for vertical stirrups, $k_1 = 0.75d$ and for inclined stirrups, $k_2 = d$

So, $\frac{k_1}{k_2} = 0.75$

© Copyright: MADE EASY

9. (b)

$$r = \frac{l_y}{l_x} = \frac{4}{3}$$

Maximum shear force along larger edge,

$$F_L = \frac{w_u l_x \times r}{2 + r} = \frac{12 \times 3 \times \frac{4}{3}}{2 + \frac{4}{3}} = \frac{48 \times 3}{10} = 14.4 \text{ kN/m}$$

Maximum shear force along shorter edge,

$$F_{S} = \frac{w_{u}l_{x}}{3} = \frac{12 \times 3}{3} = 12 \text{ kN/m}$$

 $\frac{F_{L}}{F_{S}} = \frac{14.4}{12} = 1.2$

10. (d)

- Lap length of reinforcement in tension shall not be less than 30ϕ .
- If three bars are bundled together, development length shall be increased by 20%.
- If 2 bars are bundled then 10% if 3 bars are bundled then 20% and if 4 bars are bundled then 33%.

11. (a)

For 50 m³ of concrete volume, we need to consider 4 number of samples.

Above 50 m³, one addition sample is required.

 \therefore For 206 m³ concrete,

Number of samples required = 4 + 1 + 1 + 1 + 1 = 8

12. (a)

Effective bending moment due to torsion,

$$M_t = \frac{T_u}{1.7} \left(1 + \frac{D}{b} \right) = \frac{140}{1.7} \left(1 + \frac{750}{350} \right) = 258.82 \text{ kNm} \simeq 259 \text{ kNm}$$

Equivalent bending moment at bottom is,

$$M_e = M_t + M_\mu = 259 + 200 = 459 \text{ kN-m}$$

13. (a)

Width of web, $b_w = 250 \text{ mm}$ Effective depth,d = 500 - 40 = 460 mm

Nominal shear stress, $\tau_v = \frac{V_u}{b_{vv}d} = \frac{200 \times 1000}{250 \times 460} = 1.74 \text{ N/mm}^2$

Design shear stress,

$$\tau_{us} = \tau_v - \tau_c$$

= 1.74 - 0.62 = 1.12 N/mm²

14. (d)

The given value are as follows: $D_f = 120 \text{ mm}, b_f = 900 \text{ mm}, b_w = 300 \text{ mm}, d = 600 \text{ mm}$ For Fe415, $(x_u)_{\text{lim}} = 0.48d = 0.48 \times 600 = 288 \text{ mm}$ Assuming neutral axis lies in the flange (i.e., $x_u < D_f$)

9

$$x_u = \frac{0.87 f_y A_{st}}{0.36 f_{ck} b_f} = \frac{0.87 \times 415 \times 4 \times \frac{\pi}{4} \times 25^2}{0.36 \times 20 \times 900}$$

 $= 109.4 \text{ mm} < 120 \text{ mm} (= D_f)$

: Our assumption is correct.

...

 $M_u = 0.36 f_{ck} b_f x_u (d - 0.42 x_u)$ = 0.36 \times 20 \times 900 \times 109.4 (600 - 0.42 \times 109.4) Nmm = 392.77 kN-m

15. (b)

For solid slabs, to control deflection, span to overall depth ratios are given as:

	Mild steel	HYSD
Simply supported slab	35	28
Continuous slab	40	32

16. (c)

Value of partial safety factor (γ_f) for loads under various load combinations:

Load	Limit st	ate of c	ollapse	Limit state of sericieability			
combination	DL	IL	WL/EL	DL	IL	WL/EL	
DL + IL	1.5	1.5		1	1		
DL + WL/EL	1.5 or 0.90	-	1.50	1	-	1	
DL + IL + WL/FL	1.2	1.2	1.2	1.0	0.8	0.8	

17. (a)

Let,

 $\frac{75}{500} = \frac{y}{500 - x_u}$

 A_{c} = Area of concrete

 $y = 75 \left(\frac{500 - x_u}{500} \right)$

 \Rightarrow

Width of section at neutral axis i.e., $b_{NA} = 250 + 2y$

$$b_{NA} = 250 + 150 \left(\frac{500 - x_u}{500}\right)$$

Average width of beam section in compression

 $= \frac{1}{2} (400 + b_{NA})$ $= \frac{1}{2} \left[650 + 150 \left(\frac{500 - x_u}{500} \right) \right]$ $= (400 - 0.15x_u)$ C = T $\Rightarrow \qquad 0.36f_{ck} \ b_{avg} \ x_u = 0.87 \ f_y \ A_{st}$ $\Rightarrow 0.36 \times 25 \times (400 - 0.15x_u)x_u = 0.87 \times 415 \times 1473$

 $x_u = 157 \text{ mm} = 15.7 \text{ cm}$

400 mm

 b_{NA}

250 mm

 $T = 0.87 f_{1}A_{2}$

d = 500 mm

...

 $\Rightarrow x_u^2 - 2666.7 x_u + 393945.67 = 0$

 $C = 0.36 f_{ck} (A_c)$

For top fiber

18. (d)

Given: h = 300 mm, L = 15 m, y = 130 mm, Equation of parabolic cable is

$$y = \frac{4hx(l-x)}{l^2}$$

$$0.13 = \frac{4(0.3)(x)(15-x)}{15^2}$$

$$\Rightarrow \qquad 29.25 = 18x - 1.2x^2$$

$$\Rightarrow \qquad 1.2x^2 - 18x + 29.25 = 0$$

$$\therefore \qquad x = 1.85 \text{ m}$$

19. (b)

Based on no tension at bottom

$$\frac{P}{A} - \frac{M}{Z} = 0 \qquad \dots (i)$$

$$\frac{P}{A} + \frac{M}{Z} = 40 \qquad \dots (ii)$$

From equation (i) and equation (ii)

$$\frac{\frac{2M}{Z}}{\frac{2M}{6}} = 40$$

$$\Rightarrow \qquad \qquad \frac{\frac{2M}{2M}}{\left(\frac{BD^2}{6}\right)} = 40$$

$$\Rightarrow \qquad \qquad M = \frac{40 \times 450 \times 650^2}{6} \times \frac{1}{2}$$

$$\Rightarrow \qquad \qquad M = 633.75 \times 10^6 \text{ N-mm}$$

20. (c)

Maximum spacing between lateral ties is 300 mm.

21. (b)

 \therefore *D* > 400 mm and column is helically reinforced, so As per IS 456 : 2000,

CT-2023-24 CE · Reinforced Cement Concrete 11

... where

 $P_u = [0.4 f_{ck} A_c + 0.67 f_y A_{sc}] \times 1.05$ $A_c = \text{Area of concrete}$ $= A_g - A_{sc}$ $A_{sc} = \text{Area of steel in compression}$ A_g = Gross cross-sectional area of compression member

5% increment in load carrying capacity as it is helically reinforced.

$$\therefore \qquad P_{u} = 1.05 \left[0.4 \times 25 \times \left(\frac{\pi}{4} \times 500^{2} - 8 \times \frac{\pi}{4} \times 20^{2} \right) + 0.67 \times 500 \times \frac{\pi}{4} \times 8 \times 20^{2} \right] \times 10^{-3}$$

 $P_u = 1.05 \ [1938362.667 + 841946.83] \times 10^{-3}$ \Rightarrow

$$\Rightarrow$$
 $P_u = 2919.32 \text{ kN} \simeq 2920 \text{ kN} \text{ (say)}$

22. (d)

For axially loaded column,

$$e_{\min} = \max \left\{ \frac{L}{500} + \frac{B \text{ or } D}{30} < 0.05 \ (B \text{ or } D) \right\}$$

= $\max \left\{ \frac{3000}{500} + \frac{400}{30} = 19.33 < 0.05 \ (B \text{ or } D) = 20 \text{ mm} \right\}$

.

$$P_{u} = 0.4 f_{ck} A_{c} + 0.67 f_{y} A_{sc}$$

$$P_{u} = 0.4 f_{ck} [A_{g} - A_{sc}] + 0.67 f_{y} A_{sc}$$
where
$$A_{c} = \text{Area of concrete}$$

$$A_{g} = \text{Gross area of column}$$

$$A_{sc} = \text{Area of compression steel}$$

$$1650 \times 10^{3} = 0.4 \times 20 [400^{2} - A_{sc}] + 0.67 (500) A_{sc}$$

$$1650 \times 10^{3} = 1280000 - 8 A_{sc} + 335 A_{sc}$$

$$A_{sc} = 1131.498 \text{ mm}^{2} \simeq 1131.50 \text{ mm}^{2}$$
But as per IS 456, $(A_{sc})_{\min} = 0.8\%$ of cross-sectional area
$$= \frac{0.8}{100} \times 400^{2} = 1280 \text{ mm}^{2}$$

$$\therefore \qquad A_{sc} = 1280 \text{ mm}^{2}$$

23. (c)

Stress in concrete at the level of tendon

$$f_{c} = \frac{P}{A} + \frac{Pe^{2}}{I}$$

= $\frac{200 \times 10^{3}}{150 \times 250} + \frac{200 \times 20^{2} \times 10^{3}}{\frac{150 \times 250^{3}}{12}}$
= 5.743 MPa

Loss of prestress due to elastic deformation

$$\Delta f_s = \frac{E_s}{E_c} \times f_c = \frac{2.1 \times 10^5}{3.0 \times 10^4} \times 5.743 = 40.20 \text{ MPa}$$

24. (a)

Required footing area = $\frac{1.1P}{q_u}$ P = Column loadwhere Self-weight of footing and backfill soil considered is 10% of column load. $A = \frac{1.1 \times 2000}{210} = 10.48 \text{ m}^2$ *.*.. $\frac{L}{B} = \frac{600}{400} = \frac{3}{2}$ $L \times B = 10.48$ $\frac{3}{2}B \times B = 10.48$ \Rightarrow B = 2.64 m*.*.. L = 3.96 mand Hence, nearest answer is option (a).

25. (b)

We know, maximum diameter of steel = $\frac{\text{Slab thickness}}{8}$

For minimum thickness of slab, we have to use minimum size of reinforcement.

So, Minimum thickness = $8 \times (\text{min. dia of } r/f) = 8 \times 12 = 96 \text{ mm}$

26. (b)

Loss of shrinkage of concrete in post-tensioned PSC beam

$$= \frac{\left(2 \times 10^{-4}\right)E_s}{\log(T+2)} = \frac{\left(2 \times 10^{-4}\right) \times \left(2 \times 10^5\right)}{\log(8)} = 44.29 \text{ N/mm}^2$$

%loss = $\frac{44.29}{1000} \times 100 = 4.429\% \simeq 4.43\%$

27. (d)

- Critical section for one-way shear is at distance 'd' from the face of the column.
- Critical section for maximum bending moment under masonary wall is located at mid-way between the face and middle of wall.

$$\delta = \left(1 + \frac{3P_u}{f_{ck}BD}\right) \le 1.5 = \left(1 + \frac{3 \times 1.5 \times 500 \times 10^3}{25 \times 300 \times 500}\right) \le 1.5$$

$$\delta = 1.6 \neq 1.5$$

$$\delta = 1.5$$

So,

30. (c)

- 1. Here the concrete in the test specimen is subjected to a state of compression (and not tension).
- 2. Factors such as cracking and dowel forces, which lower the bond resistance of a flexural member, are not present in a concentric pull out test.
- 3. Friction at the bearing on the concrete offers some restraint against splitting.