ENGINEERING MATHEMATICS

CIVIL ENGINEERING

Date of Test : 14/06/2023

ANSWER KEY

| 1. | (b) | 7. | (a) | 13. | (c) | 19. | (b) | 25. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (d)

DETAILED EXPLANATIONS

1. (b)

Solution of laplace equation having continuous
Second order partial derivating
\therefore

$$
\begin{aligned}
\nabla^{2} \phi & =0 \\
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}} & =0
\end{aligned}
$$

$\therefore \quad \phi$ is harmonic function.
2. (b)

Median speed is the speed at the middle value in series of spot speeds that are arranged in ascending order. 50% of speed values will be greater than the median 50% will be less than the median.
Ascending order of spot speed studies are
32, 39, 45, 51, 53, 56, 60, 62, 66, 79
Median speed $=\frac{53+56}{2}=54.5 \mathrm{~km} / \mathrm{hr}$
3. (c)

$$
\begin{aligned}
\int_{-\infty}^{\infty} p(x) \cdot d x & =1 \\
\int_{-\infty}^{\infty} K \cdot e^{-\alpha|x|} \cdot d x & =1 \\
\int_{-\infty}^{0} K \cdot e^{\alpha x} \cdot d x+\int_{0}^{\infty} K \cdot e^{-\alpha x} & =1 \\
\Rightarrow \quad \frac{K}{\alpha}\left(e^{\alpha x}\right)_{-\infty}^{0}+\frac{K}{-\alpha}\left(e^{-\alpha x}\right)_{0}^{\infty} & =1 \\
\Rightarrow \quad \frac{K}{\alpha}+\frac{K}{\alpha} & =1 \\
2 K & =\alpha \\
\Rightarrow \quad K & =0.5 \alpha
\end{aligned}
$$

4. (c)

Since, $\cos 2 x=\cos ^{2} x-\sin ^{2} x$, therefore $\cos 2 x$ is a linear combination of $\sin ^{2} x$ and $\cos ^{2} x$ and hence these are linearly dependent.
5. (b)

$$
\ddot{x}+3 x=0
$$

Auxiliary equation is

$$
\begin{aligned}
D^{2}+3 & =0 \\
D & = \pm \sqrt{3} i
\end{aligned}
$$

i.e.

\therefore	x	$=A \cos \sqrt{3} t+B \sin \sqrt{3} t$	
at	t	$=0, x=1$	
\Rightarrow	A	$=1$	
	Now,	\dot{x}	$=\sqrt{3}(B \cos \sqrt{3} t-A \sin \sqrt{3} t)$
	At	t	$=0, \dot{x}=0$
\Rightarrow	B	$=0$	
	So,	x	$=\cos \sqrt{3} t$
	$x(1)$	$=\cos \sqrt{3}=0.99$	

6. (c)

Intermediate value theorem states that if a function is continuous and $f(a) \cdot f(b)<0$, then surely there is a root in (a, b). The contrapositive of this theorem is that if a function is continuous and has no root in (a, b) then surely $f(a) \cdot f(b) \geq 0$. But since it is given that there is no root in the closed interval $[a, b]$ it means $f(a)$ - $f(b) \neq 0$.

So surely $f(a) \cdot f(b)>0$ which is choice (c).
7. (a)

$$
\begin{array}{rlr}
u & =2 x y \\
u_{x} & =2 y \quad u_{y}=2 x
\end{array}
$$

In option (a)

$$
\begin{aligned}
V_{x} & =-2 x \quad u_{y}=-V_{x} \\
V_{y} & =2 y
\end{aligned}
$$

(-R equation are satisfied only in option a)
8. (a)

$$
\begin{aligned}
f(x, y) & =x^{2}+3 y^{2} \\
\phi & =x^{2}+y^{2}-2 \text { and point } P \Rightarrow(1,1)
\end{aligned}
$$

Normal to the surface,

$$
\nabla \phi=\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}=2 x \hat{i}+2 y \hat{j}
$$

$$
\left.\nabla \phi\right|_{\mathrm{at} P(1,1)}=2 \hat{i}+2 \hat{j}
$$

the normal vector is $\vec{a}=2 \hat{i}+2 \hat{j}$
Magnitude of directional derivative of f along \vec{a} at $(1,1)$ is $\Rightarrow \nabla \cdot f \cdot \hat{a}$

$$
\begin{aligned}
\nabla f & =\hat{i} \frac{\partial f}{\partial x}+\hat{j} \frac{\partial f}{\partial y}=2 x \hat{i}+6 y \hat{j} \\
\left.\nabla f\right|_{(1,1)} & =2 \hat{i}+6 \hat{j} \\
|\vec{a}| & =\sqrt{4+4}=2 \sqrt{2} \\
\hat{a} & =\frac{2 \hat{i}+2 \hat{j}}{2 \sqrt{2}}=\frac{\hat{i}+\hat{j}}{\sqrt{2}}
\end{aligned}
$$

\therefore Magnitude of directional derivative

$$
\begin{aligned}
& =(2 \hat{i}+6 \hat{j})\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right) \\
& =\frac{2+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4 \sqrt{2}
\end{aligned}
$$

9. (a)

$$
I=\oint_{c} \frac{-3 z+4}{\left(z^{2}+4 z+5\right)} d z=2 \pi i \text { (sum of residues) }
$$

Poles of $\frac{-3 z+4}{\left(z^{2}+4 z+5\right)}$ are given by

$$
\begin{aligned}
z^{2}+4 z+5 & =0 \\
z & =\frac{-4 \pm \sqrt{16-20}}{2}=\frac{-4 \pm 2 i}{2}=-2 \pm i
\end{aligned}
$$

Since the poles lie outside the circle $|z|=1$.
So $f(z)$ is analytic inside the circle $|z|=1$.
Hence $\oint_{c} f(z) d z=2 \pi i(0)=0$
10. (b)

Given that the partial differential equation is parabolic.

$$
\begin{array}{rlrl}
\therefore & B^{2}-4 A C & =0 \\
\therefore & B^{2}-4(3)(3) & =0 \\
B^{2}-36 & =0 \\
B^{2} & =36
\end{array}
$$

$$
\text { Here } A=3
$$

11. (d)

The differential equation is $3 y^{\prime \prime}(x)+27 y(x)=0$
The auxillary equation is

$$
\begin{aligned}
3 m^{2}+27 & =0 \\
m^{2}+9 & =0 \\
m & = \pm 3 i
\end{aligned}
$$

Solution is $y=c_{1} \cos 3 x+c_{2} \sin 3 x$
given that
$y(0)=0$
\therefore
$0=C_{1}$
$y^{\prime}=3 c_{2} \cos 3 x$
$y^{\prime}(0)=2000$
$2000=0+3 c_{2}$
$c_{2}=\frac{2000}{3}$
$\therefore \quad y=\frac{2000}{3} \sin 3 x$
when $x=1$
$y=\frac{2000}{3} \sin 3=94.08$
12. (d)

$$
\begin{align*}
x+y+z & =4 \tag{1}\\
x-y+z & =0 \tag{2}\\
2 x+y+z & =5 \tag{3}
\end{align*}
$$

Adding (1) and (2) \& (2) and (3) gives
$2 x+2 z=4$ and $3 x+2 z=5$ which gives $x=1, z=1$ and $y=2$
Alt: Option (b) can be eliminated since they do not satisfy 1st condition. Only (d) satisfies 3rd equation.
13. (c)

$$
\begin{align*}
\text { Trace of } A & =14 \\
a+5+2+b & =14 \\
a+b & =7 \tag{i}\\
\operatorname{det}(A) & =100 \\
5\left|\begin{array}{lll}
a & 3 & 7 \\
0 & 2 & 4 \\
0 & 0 & b
\end{array}\right| & =100 \\
5 \times 2 \times a \times b & =100 \\
10 a b & =100 \\
a b & =10 \tag{ii}
\end{align*}
$$

From equation (i) and (ii)

$$
\begin{array}{lrl}
\text { either } & a & =5, \quad b=2 \\
\text { or } & a & =2 \quad b=5 \\
& |a-b| & =|5-2|=3
\end{array}
$$

14. (a)

Given differential equation is

$$
\begin{align*}
x \frac{d y}{d x}+y & =x^{4} \\
\Rightarrow \quad \frac{d y}{d x}+\left(\frac{y}{x}\right) & =x^{3} \tag{i}
\end{align*}
$$

Standard form of leibnitz linear equation is

$$
\begin{equation*}
\frac{d y}{d x}+P y=Q \tag{ii}
\end{equation*}
$$

where P and Q function of x only and solution is given by

$$
\left.y(\text { I.F. })=\int Q . \text { I.F. }\right) d x+C
$$

where, integrating factor (I.F.) $=e^{\int P d x}$
Here in equation (i),

Solution

$$
\begin{aligned}
P & =\frac{1}{x} \text { and } Q=x^{3} \\
\text { I.F. } & =e^{\int \frac{1}{x} d x}=e^{\ln x}=x \\
y(x) & =\int x^{3} x d x+c \\
y x & =\frac{x^{5}}{5}+c
\end{aligned}
$$

given condition

$$
\begin{aligned}
y(1) & =\frac{6}{5} \\
x & =1 ; y=\frac{6}{5}
\end{aligned}
$$

means at
\Rightarrow
$\frac{6}{5} \times 1=\frac{1}{5}+c$
$\Rightarrow \quad c=\frac{6}{5}-\frac{1}{5}=1$

Therefore

$$
y x=\frac{x^{5}}{5}+1
$$

$$
\Rightarrow \quad y=\frac{x^{4}}{5}+\frac{1}{x}
$$

15. (c)

$$
\begin{aligned}
F(s) & =\int_{0}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0}^{1} 2 e^{-s t} d t+\int_{1}^{\infty} 0 \cdot e^{-s t} d t \\
& =2\left[\frac{e^{-s t}}{-s}\right]_{0}^{1}=\frac{2}{-s}\left[e^{-s}-1\right] \\
& =\frac{2\left(1-e^{-s}\right)}{s}=\frac{2-2 e^{-s}}{s}
\end{aligned}
$$

16. (b)

From the diagram C is $y=x$

$$
\begin{aligned}
I & =\int_{C}\left(x^{2}+i y^{2}\right) d z \\
& =\int_{C}\left(x^{2}+i y^{2}\right)(d x+i d y) \\
& =\int_{C}\left(x^{2}+i x^{2}\right)(d x+i d x) \\
& =\int_{0}^{2} x^{2} d x+i x^{2} d x+i x^{2} d x-x^{2} d x \\
& =2 i \int_{0}^{1} x^{2} d x=\left.2 i\left(\frac{x^{3}}{3}\right)\right|_{0} ^{1}=\frac{2 i}{3}
\end{aligned}
$$

17. (c)

Let

$$
\begin{aligned}
x(y d x+x d y) \cos \frac{y}{x} & =y(x d y-y d x) \sin \frac{y}{x} \\
\frac{y d x+x d y}{x d y-y d x} & =\frac{y}{x} \tan \frac{y}{x}
\end{aligned}
$$

$$
y=v \cdot x
$$

$$
d y=v d x+x d v
$$

$$
\frac{v x d x+v x d x+x^{2} d v}{v x d x+x^{2} d v-v x d x}=v \tan v
$$

$$
\frac{x d v+2 v d x}{x d v}=v \tan v
$$

$$
1+\frac{2 v}{x} \frac{d x}{d v}=v \tan v
$$

$$
\frac{2 v}{x} \frac{d x}{d v}=v \tan v-1
$$

$$
2 \frac{d x}{x}=\left(\tan v-\frac{1}{v}\right) d v
$$

Integrating both sides.

$$
2 \log x=\log |\sec v|-\log v+\log c
$$

$$
\Rightarrow \quad x^{2}=\frac{c \sec v}{v}
$$

$$
\Rightarrow \quad x^{2} \frac{y}{x}=\operatorname{csec} \frac{y}{x}
$$

$$
\Rightarrow \quad x y \cos \frac{y}{x}=\mathrm{c}
$$

19. (b)

Let P be the probability that six occurs on a fair dice,

$$
\begin{array}{ll}
\therefore & P=\frac{1}{6} \\
\therefore & q=\frac{5}{6}
\end{array}
$$

Let X, be the number of times 'six' occurs,
Probability of obtaining at least two 'six' in throwing a fair dice 4 times is

$$
\begin{aligned}
& =1-\{P(X=0)+P(X=1)\} \\
& =1-\left\{{ }^{4} C_{0} p^{0} q^{4}+{ }^{4} C_{1} p^{1} q^{3}\right\} \\
& =1-\left\{\left(\frac{5}{6}\right)^{4}+\left[4 \times \frac{1}{6} \times\left(\frac{5}{6}\right)^{3}\right]\right\} \\
& =1-\left\{\frac{125}{144}\right\}=\frac{19}{144}
\end{aligned}
$$

20. (d)

Since negative and positive are equally likely, the distribution of number of negative values is binomial with
$n=5$ and $p=\frac{1}{2}$
Let X represent number of negative values in 5 trials.
p (at most 1 negative value)

$$
\begin{aligned}
& =p(x \leq 1) \\
& =p(x=0)+p(x=1) \\
& =5 C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5}+5 C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{4} \\
& =\frac{6}{32}
\end{aligned}
$$

21. (a)

$$
\begin{aligned}
\int_{0}^{\pi} x^{2} \cos x d x & =x^{2}(\sin x)-2 x(-\cos x)+\left.2(-\sin x)\right|_{0} ^{\pi} \\
& =\pi^{2} \cdot 0+2 \pi(-1)-0=-2 \pi
\end{aligned}
$$

22. (a)

Let,

$$
\begin{aligned}
\sin ^{-1} x & =\mathrm{t} \\
\frac{d x}{\sqrt{1-x^{2}}} & =d t \\
I & =\int_{0}^{\pi / 2} t^{2} d t=\left[\frac{t^{3}}{3}\right]_{0}^{\pi / 2}=\frac{\pi^{3}}{24}
\end{aligned}
$$

23. (a)

$$
\begin{array}{rlrl}
& & \begin{aligned}
(x+1) \frac{d y}{d x}+1 & =2 e^{-y} \\
\Rightarrow & (x+1) \frac{d y}{d x}
\end{aligned} & =\left(2 e^{-y}-1\right) \\
\Rightarrow & \frac{d y}{\left(2 e^{-y}-1\right)} & =\frac{d x}{x+1} \\
\Rightarrow & & \frac{e^{y} d y}{2-e^{y}} & =\frac{d x}{x+1} \\
\Rightarrow & -\log \left(2-e^{y}\right) & =\log (x+1)+c \\
\Rightarrow \quad & (x+1)\left(2-e^{y}\right) & =k
\end{array}
$$

24. (a)

The area of parallelogram $O P Q R$ in figure shown above, is the magnitude of the vector product

$$
\begin{aligned}
& =|\overrightarrow{O P} \times \overrightarrow{O R}| \\
\overrightarrow{O P} & =a \hat{i}+b \hat{j} \\
\overrightarrow{O R} & =e \hat{i}+d \hat{j} \\
\overrightarrow{O P} \times \overrightarrow{O R} & =\left|\begin{array}{ccc}
i & j & k \\
a & b & 0 \\
c & d & 0
\end{array}\right|=0 \hat{i}+0 \hat{j}+(a d-b c) \hat{k} \\
|\overrightarrow{O P} \times \overrightarrow{O R}| & =\sqrt{0^{2}+0^{2}+(a d-b c)^{2}}=a d-b c
\end{aligned}
$$

25. (d)

$$
\begin{aligned}
f & =u+i v \\
u & =3 x^{2}-3 y^{2}
\end{aligned}
$$

for f to be analysis, we have Cauchy-Riemann conditions,

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \tag{i}\\
& \frac{\partial u}{\partial y}=\frac{-\partial v}{\partial x} \tag{ii}
\end{align*}
$$

From (i) we have,

$$
6 x=\frac{\partial v}{\partial y}
$$

$\Rightarrow \quad \int \partial v=\int 6 x \partial y$
$v=6 x y+f(x)$
i.e.

$$
\begin{equation*}
v=6 x y+f(x) \tag{iii}
\end{equation*}
$$

Now applying equation (ii) we get,

$$
\begin{aligned}
\frac{\partial u}{\partial y} & =\frac{-\partial v}{\partial x} \\
\Rightarrow \quad-6 y & =-\left[6 x+\frac{d f}{d x}\right] \\
\Rightarrow \quad 6 x+\frac{d f}{d x} & =6 y \\
\frac{d f}{d x} & =6 y-6 x
\end{aligned}
$$

By integrating,

$$
f(x)=6 y x-3 x^{2}+K
$$

Substitute in equation (iii)

$$
\begin{aligned}
v & =3 x^{2}+6 y x-3 x^{2}+K \\
v & =6 y x+K
\end{aligned}
$$

26. (b)

Result, Rank $\left(A^{\top} A\right)=\operatorname{Rank}(A)$
27. (a)

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} r^{2} \sin \phi \cdot d r \cdot d \phi \cdot d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 3}\left[\frac{r^{3}}{3}\right]_{0}^{1} \sin \phi d \phi d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi}[-\cos \phi]_{b}^{\pi / 3} d \theta=\frac{1}{3} \times \frac{1}{2} \times \int_{0}^{2 \pi} d \theta=\frac{1}{3} \times \frac{1}{2} \times 2 \pi=\frac{\pi}{3}
\end{aligned}
$$

28. (b)

Point of inter-section of the two curves are $x=0,1,-1$

$$
\text { Area }=\int_{-1}^{0}\left(x^{3}-x\right) d x=\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{-1}^{0}=\frac{0-(-1)^{4}}{4}-\frac{0-(-1)^{2}}{2}=\frac{1}{4}
$$

29. (d)

Given that,

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

$$
F(s)=\left[\frac{3 s+1}{s^{3}+4 s^{2}+(K-3) s}\right]
$$

$$
\lim _{t \rightarrow \infty} f(t)=1
$$

$$
\Rightarrow \quad \lim _{s \rightarrow 0} s\left[\frac{3 s+1}{s^{3}+4 s^{2}+(K-3) s}\right]=1
$$

$$
\Rightarrow \quad \lim _{s \rightarrow 0}\left[\frac{3 s+1}{s^{2}+4 s+(K-3)}\right]=1
$$

$$
\Rightarrow \quad \frac{1}{K-3}=1
$$

$$
\Rightarrow \quad K-3=1
$$

$$
\Rightarrow \quad K=4
$$

30. (b)

The augmented matrix for the given system is $\left[\begin{array}{ccc|c}2 & 1 & -4 & \alpha \\ 4 & 3 & -12 & 5 \\ 1 & 2 & -8 & 7\end{array}\right]$.
Performing Gauss-Elimination on the above matrix
$\left[\begin{array}{ccc|c}2 & 1 & -4 & \alpha \\ 4 & 3 & -12 & 5 \\ 1 & 2 & -8 & 7\end{array}\right] \xrightarrow[R_{3}-1 / 2 R_{1}]{R_{2}-2 R_{1}}\left[\begin{array}{ccc|c}2 & 1 & -4 & \alpha \\ 0 & 1 & -4 & 5-2 \alpha \\ 0 & 3 / 2 & -6 & 7-\alpha / 2\end{array}\right]$
$\xrightarrow{R_{3}-3 / 2 R_{2}}\left[\begin{array}{ccc|c}2 & 1 & -4 & \alpha \\ 0 & 1 & -4 & 5-2 \alpha \\ 0 & 0 & 0 & \frac{5 \alpha-1}{2}\end{array}\right]$
Now for infinite solution it is necessary that at least one row must be completely zero.

$$
\begin{aligned}
\therefore \quad \frac{5 \alpha-1}{2} & =0 \\
\alpha & =1 / 5 \text { is the solution }
\end{aligned}
$$

\therefore There is only one value of α for which infinite solution exists.

