CLASS TEST

India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal| Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in

COMPUTER ORGANIZATION

COMPUTER SCIENCE \& IT

Date of Test : 09/06/2023

ANSWER KEY

1.	(d)	7.	(d)	13.	(a)	19.	(b)	25.	(c)
2.	(a)	8.	(c)	14.	(b)	20.	(c)	26.	(b)
3.	(a)	9.	(b)	15.	(a)	21.	(d)	27.	(c)
4.	(c)	10.	(c)	16.	(c)	22.	(b)	28.	(d)
5.	(b)	11.	(a)	17.	(b)	23.	(a)	29.	(a)
6.	(c)	12.	(b)	18.	(b)	24.	(a)	30.	(c)

DETAILED EXPLANATIONS

1. (d)

- Since, vertical microprogram encode the control signals hence a signal decoder is needed which decrease the operation speed of vertical micro-programming in comparison with horizontal microprogramming.
- Since, the control signal bits under horizontal microprogram control unit are not encoded. Hence no signal decoder is needed.

2. (a)

Since, it uses horizontal micro-programmed that requires 1 bit control / signal.
For 125 control signal, we need 125 bits.
Total number of micro-operation instruction $=215 \times 6=1290$
It requires 11 bit.
3. (a)

A vectored interrupt is the one, where CPU actually knows the address of the ISR in advance, with the help of an interrupt vector, the interrupting device supplies the branch information to the processor.
4. (c)

Address format

Number of operations $=2^{6}=64$
Number of free opcodes after 2-address $=64-2=62$
Number of 1 add instruction $=62 \times 32=1984$
Free opcodes $=1984-1024=960$
Number of 0 add instruction $=960 \times 32=30720$
5. (b)

- More than one word are put in one cache block to explicit in the spatial locality of reference.
- By the help of virtual memory, programs can exceed from the size of primary memory, hence increases the degree of multi programming.
- Increasing RAM will result in fewer page faults.

Hence only S_{2} is the correct statement.
6. (c)

Multiplier	Pair with $(\boldsymbol{q}-\mathbf{1})$	Recorder
0	0	0
1	0	-1
1	1	0
0	1	+1
1	0	-1
0	1	+1
0	0	0
1	0	-1
0	1	+1
1	0	-1
1	1	0
0	1	+1

7. (d)

RAW hazards: $I_{1}-I_{2}, I_{1}-I_{4}, I_{2}-I_{3}, I_{2}-I_{4}, I_{2}-I_{5}$
WAW hazards: $I_{2}-I_{4}$
WAR hazards: $I_{3}-I_{4}$ and $I_{2}-I_{4}$
8. (c)

Rate of transfer to or from any one disk $=30 \mathrm{MBps}$.
Maximum memory transfer rate $=\frac{4 \mathrm{~B}}{10 \times 10^{-9}}=400 \times 10^{6} \mathrm{Bps}=400 \mathrm{MBps}$
Since rate of data transfer $=30 \mathrm{MBps}$
Here number of disk transfer $=\left\lceil\frac{400}{30}\right\rceil=13$
Therefore, 13 disks can simultaneously transfer data to or from the main memory.
9. (b)

The address division will be given as:

11	2	3
Tag	Line	Wor
73B2 $\rightarrow 011100111011001$		
DF45 $\rightarrow 110111110100010$		
$8 C 7 C \rightarrow 100011000111110$		
07E9 $\rightarrow 0000011111101001$		

10. (c)

- In pipelined CPU, there will be buffer delays. So, for single instruction non-pipelined CPU takes less time compared to pipelined CPU.
- Structural dependencies cause hazards during pipelining.

11. (a)

For non-pipelined processor:
For p-instruction execution time $=\frac{(p \times 5)}{5}=p$ ns
Pipelined processor:
For p-instruction execution time $=\frac{p}{3}=0.33 p \mathrm{~ns}$
Speed-up $=\frac{p}{0.33 p}=3.03$
12. (b)

Memory mapped I/O uses the same address bus to address both memory and I/O devices the memory and registers of the I/O devices are mapped to address values.
So, when an address is accessed by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of I/O device.
13. (a)

$$
\begin{aligned}
& \text { Number of lines }=\frac{64 K}{32}=2^{11} \\
& \text { Number of sets }=\frac{2^{11}}{4}=\frac{2^{11}}{2^{2}}=2^{9}
\end{aligned}
$$

	32 bits	
Tag	SO	WO
18 bits	$\log _{2} 2^{9}=9$	$\log _{2} 32=5$ bit

Tag memory size $=S \times P \times \#$ tag bits
$=2^{9} \times 4 \times(18+1+1+2)$
$=2^{9} \times 2^{2} \times 22$ bits
$=2^{10} \times 2 \times 22$ bits
$=44 \mathrm{~K}$ bits
14. (b)

Programmed I/O: Processor issues an I/O command, on behalf of a processor, to an IO module; that process then busy-waits for the operation to be completed before proceeding.
Interrupt driven I/O: The processor isues an IO command on behalf of a process, continues to execute subsequent instruction, and is interrupted by the IO module when the latter has completed its work.
Direct memory access: A DMA module controls the exchange of data between main memory and IO module.
15. (a)

Number of interupts generated $=5000$ interrupt $/ \mathrm{sec}$
Time by 1 interrupt $=200 \mu \mathrm{sec}$
Time consumed by every interrupt $=250 \mu \mathrm{~s}$
Fraction of processor time consumed $=200 / 250=0.8$
In \% = $0.8 \times 100=80$
16. (c)

$$
\begin{aligned}
\text { Speedup }(S) & =\frac{1}{(1-\text { Cache \% used })+\left[\frac{\text { Cache \% used }}{\text { Speedup using cache }}\right]} \\
& =\frac{1}{(1-F)+\left(\frac{F}{S}\right)}=\frac{1}{(1-0.9)+\left(\frac{0.9}{30}\right)}=\frac{1}{(0.1)+\left(\frac{0.9}{30}\right)} \\
& =\frac{30}{3.9}=7.69
\end{aligned}
$$

17. (b)

	Instruction	Instruction size	Location
I_{1}	Load $\mathrm{r}_{0}, 300$	2 word	$2000-2003$
I_{2}	$\mathrm{MOV} \mathrm{r}_{1}, 5000$	2 word	$2004-2007$
I_{3}	$\mathrm{MOV} \mathrm{r}_{2},\left(\mathrm{r}_{1}\right)$	1 word	$2008-2009$
I_{4}	Add r $_{0}, \mathrm{r}_{2}$	1 word	$2010-2011$
I_{5}	$\mathrm{MOV}, 6000, \mathrm{r}_{0}$	2 word	$2012-2015$
I_{6}	HALT	1 word	$2016-2017$

\therefore Since 1 word is of 2 bytes.
If an interrupt occurs, the CPU has been halted after executing the HALT instruction, the return address 2016 is saved in the stack.
18. (b)

$$
\begin{aligned}
\mathrm{T}_{\text {avg }} & =h_{1} t_{1}+\left(1-h_{1}\right) h_{2}\left(t_{2}+t_{1}\right)+\left(1-h_{1}\right)\left(1-h_{2}\right)\left(t_{3}+t_{2}+t_{1}\right) \\
& =0.65 \times 0.02+0.35 \times 0.45 \times 0.22+0.35 \times 0.55 \times 2.22 \\
& =0.013+0.03465+0.42735 \\
& =0.475=475 \mu \mathrm{sec}
\end{aligned}
$$

19. (b)

$$
\text { Biased exponent }=18+64=82
$$

Representing 82 in binary

$$
(82)_{2}=(1010010)_{2}
$$

Representing mantissa in binary
$(0.625)_{10}=(0.10100000)$
Floating point representation is as follows:

Sign bit	Exponent	Mantissa
0	1010010	10100000

20. (c)

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13
I_{1}	FI	DI	FO	El	WO								
I_{2}		FI	DI	FO	El	WO							
I_{3}			FI	DI	FO	El	WO						
I_{4}				FI	DI	FO	El						
I_{5}					FI	DI	FO						
I_{6}						FI	FO						
I_{7}							FI	DI	FO	El	WO		
I_{8}								FI	DI	FO	El	WO	
I_{9}									FI	DI	FO	El	WO
Total $=13$ * $12=156 \mathrm{~ns}$													

21. (d)

Instruction : "Load 1000"
Direct Addressing Mode: Since the content of location '1000' is '1300'. Hence, 1300 will be loaded. Indirect Addressing Mode: The content of location '1000' is '1300'. The content of memory location '1300' is '1200'. Hence, 1200 will be loaded.
Base (Indexed) Addressing Mode: $[1000+200] \Rightarrow[1200]$. The content of memory location '1200' is 800.
22. (b)

Vertical Microprogramming :

12	6	5
Offset	Control signal	Flag bits

$$
\begin{aligned}
\text { Length of Control Word } & =\text { Flag }+ \text { Control Signal }+ \text { Offset } \quad\left[\text { Offset }=\log _{2}[240 \times 12]\right] \\
& =5+6+12 \\
& =23 \text { bits } \\
\text { For } 3 \text { Control Words } & =23 \times 3=69 \text { bits. }
\end{aligned}
$$

23. (a)

Assume $x \%$ of instructions incur 3 stall cycles.

$$
\text { Speedup }=\frac{\text { Pipeline depth }}{(1+\# \text { stall/Instruction })}
$$

Number of stall / Instructions = (\% Instruction don't incur stall $\times 0+\%$ Instruction incur stall $\times 3$)

$$
=(1-x) \times 0+x(3)=3 x
$$

$$
\therefore \quad \begin{aligned}
3 & =\frac{5}{1+3 x} \\
3+9 x & =5 \\
9 x & =5-3=2 \\
x & =2 / 9=0.222 \\
\ln \% & =0.222 \times 100=22.2
\end{aligned}
$$

24. (a)

$$
\text { Cycle time }=\frac{1}{\text { Clock time }}=\frac{1}{20 \mathrm{GHz}}=0.05 \mathrm{nsec}
$$

Number of stalls/Instruction $=(0.3 \times 0.25 \times 4)=0.3$
Average instruction ET $=(1+\#$ stalls $/$ Instruction $) \times$ Cycle time

$$
\begin{aligned}
& =(1+0.3) \times 0.05 \mathrm{~ns} \\
& =0.065 \mathrm{~ns}
\end{aligned}
$$

25. (c)

Number of stalls/Instruction $=(0.4 \times 0.4 \times 3)=0.48$
Average instruction ET $=(1+\#$ stalls $/$ Instruction $) \times$ Cycle time $=(1+0.48) \times 8 \mathrm{~ns}=11.84 \mathrm{~ns}$
26. (b)

Stack	
Push (A)	$8+64$
Push (B)	$8+64$
Add	8
Pop (C)	$8+64$
$=\mathbf{2 2 4}$ bits	

Accumulator	
Load A	$8+64$
Add B	$8+64$
Store C	$8+64$
$=216$ bits	

Register-Memory		
Load R_{1}, A	$8+6+64$	
Add R_{3}, R_{1}, B	$8+6+6+64$	
Store R_{3}, C	$8+6+64$	
$\mathbf{= 2 4 0}$ bits		

Load-store		
Load R_{1}, A	$8+6+64$	
Load R_{2}, B	$8+6+64$	
Add R_{3}, R_{1}, R_{2}	$8+6+6+6$	
Store R_{3}, C	$8+6+64$	
$\mathbf{= 2 6 0 ~ b i t s}$		

Total size $=224+216+240+260=940$ bits
27. (c)

251 opcodes $\Rightarrow 8$ bits for each register
$\therefore \quad$ Opcode $R_{1}, R_{2}, R_{3}, R_{4}$
8 bits $+5 \times 4$ bits $=8+20=28$ bits
$\left[\because 4\right.$ for 4 registers i.e., $\left.R_{1}, R_{2}, R_{3}, R_{4}\right]$.
28. (d)

Format of single precision floating point is

0	10000111	$101000000000 \ldots 00$

$$
\begin{aligned}
\text { Value } & =1 . \mathrm{M} \times 2^{\mathrm{E}-127} \\
& =1.1010 \times 2^{135-127} \\
& =(1.1010)_{2} \times 2^{8} \\
& =1.625 \times 2^{8}=(416)_{10}
\end{aligned}
$$

Octal representation

$$
\begin{array}{r|rl}
8 & 416 & \\
\hline 8 & 52 & 0 \\
\hline & 6 & 4
\end{array}
$$

Octal representation is (640).
29. (a)

Number of registers in RISC $=G+W(L+C)$

$$
\begin{aligned}
208 & =G+16(8+4) \\
G & =16
\end{aligned}
$$

30. (c)

When instruction is a computation:
Memory reference : Fetch instruction
Fetch reference of the operand
Fetch operand
Total 3 memory references.
When instruction is a branch:
Memory reference : Fetch instruction
Fetch operand reference and loading program counter
Total 2 memory references.

