	LASS	5 TE	ST –			SI.:	: 02 SK_C	S_ABCD_	_090623
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
COMPUTER ORGANIZATION									
		CC	OMPL	JTER	SCIE		E & I	Г	
	_	СС			SCIE st:09/0			Γ	
ANS	SWER K							Γ	
AN 1.	SWER K (d)							Γ 25.	(c)
		ΈY >	Date	e of Tes	st:09/(06/202	23		(c) (b)
1.	(d)	ΈΥ ➤ 7.	Date (d)	e of Tes	s t : 09/((a)	D6/2O2	2 3 (b)	25.	
1. 2.	(d) (a)	ΈΥ > 7. 8.	(d) (c)	e of Tes 13. 14.	(a) (b)	06/202 19. 20.	23 (b) (c)	 25. 26.	(b)
1. 2. 3.	(d) (a) (a)	′EY > 7. 8. 9.	(d) (c) (b)	e of Tes 13. 14. 15.	(a) (b) (a)	06/202 19. 20. 21.	23 (b) (c) (d)	 25. 26. 27.	(b) (c)

DETAILED EXPLANATIONS

1. (d)

- Since, vertical microprogram encode the control signals hence a signal decoder is needed which decrease the operation speed of vertical micro-programming in comparison with horizontal micro-programming.
- Since, the control signal bits under horizontal microprogram control unit are not encoded. Hence no signal decoder is needed.

2. (a)

Since, it uses horizontal micro-programmed that requires 1 bit control / signal. For 125 control signal, we need 125 bits. Total number of micro-operation instruction = $215 \times 6 = 1290$ It requires 11 bit.

3. (a)

A vectored interrupt is the one, where CPU actually knows the address of the ISR in advance, with the help of an interrupt vector, the interrupting device supplies the branch information to the processor.

4. (c)

Address format

	<u>→</u>	
Opcode	Address	Address
6	5	5

Number of operations = $2^6 = 64$ Number of free opcodes after 2-address = 64 - 2 = 62Number of 1 add instruction = $62 \times 32 = 1984$ Free opcodes = 1984 - 1024 = 960Number of 0 add instruction = $960 \times 32 = 30720$

5. (b)

- More than one word are put in one cache block to explicit in the spatial locality of reference.
- By the help of virtual memory, programs can exceed from the size of primary memory, hence increases the degree of multi programming.
- Increasing RAM will result in fewer page faults.

Hence only S_{2} is the correct statement.

6. (c)

Multiplier	Pair with $(q - 1)$	Recorder
0	0	0
1	0	-1
1	1	0
0	1	+1
1	0	-1
0	1	+1
0	0	0
1	0	-1
0	1	+1
1	0	-1
1	1	0
0	1	+1

India's Best Institute for IES, GATE & PSUs

7. (d)

RAW hazards: $I_1 - I_2$, $I_1 - I_4$, $I_2 - I_3$, $I_2 - I_4$, $I_2 - I_5$ WAW hazards: $I_2 - I_4$ WAR hazards: $I_3 - I_4$ and $I_2 - I_4$

8. (c)

Rate of transfer to or from any one disk = 30 MBps.

Maximum memory transfer rate = $\frac{4 \text{ B}}{10 \times 10^{-9}} = 400 \times 10^{6} \text{Bps} = 400 \text{ MBps}$

Since rate of data transfer = 30 MBps

Here number of disk transfer = $\left\lceil \frac{400}{30} \right\rceil$ = 13

Therefore, 13 disks can simultaneously transfer data to or from the main memory.

9. (b)

The address division will be given as:

10. (c)

- In pipelined CPU, there will be buffer delays. So, for single instruction non-pipelined CPU takes less time compared to pipelined CPU.
- Structural dependencies cause hazards during pipelining.

11. (a)

For non-pipelined processor:

For p-instruction execution time = $\frac{(p \times 5)}{5} = p$ ns

Pipelined processor:

For *p*-instruction execution time = $\frac{p}{3} = 0.33p$ ns

Speed-up =
$$\frac{p}{0.33p}$$
 = 3.03

12. (b)

Memory mapped I/O uses the same address bus to address both memory and I/O devices the memory and registers of the I/O devices are mapped to address values.

So, when an address is accessed by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of I/O device.

13. (a)

Number of lines	$= \frac{64K}{32} = 2^{1}$	1	
Number of sets	$= \frac{2^{11}}{4} = \frac{2^{11}}{2^2}$	= 2 ⁹	
		— 32 bits —	
	Tag	SO	WO
	18 bits	$\log_2 2^9 = 9$	log ₂ 32 = 5 bit
Tag memory size	$= S \times P \times #$	tag bits	
	$= 2^9 \times 4 \times (2^{10})$	18 + 1 + 1 +	2)
	$= 2^9 \times 2^2 \times 2^2$	22 bits	
	$= 2^{10} \times 2 \times$	22 bits	
	= 44 K bits		

14. (b)

Programmed I/O: Processor issues an I/O command, on behalf of a processor, to an IO module; that process then busy-waits for the operation to be completed before proceeding.
Interrupt driven I/O: The processor issues an IO command on behalf of a process, continues to execute subsequent instruction, and is interrupted by the IO module when the latter has completed its work.
Direct memory access: A DMA module controls the exchange of data between main memory and IO

15. (a)

module.

Number of interupts generated = 5000 interrupt / sec Time by 1 interrupt = 200 μ sec Time consumed by every interrupt = 250 μ s Fraction of processor time consumed = 200/250 = 0.8 In % = 0.8 × 100 = 80

16. (c)

Speedup (S) =
$$\frac{1}{(1-\text{Cache \% used}) + \left[\frac{\text{Cache \% used}}{\text{Speedup using cache}}\right]}$$
$$= \frac{1}{(1-F) + \left(\frac{F}{S}\right)} = \frac{1}{(1-0.9) + \left(\frac{0.9}{30}\right)} = \frac{1}{(0.1) + \left(\frac{0.9}{30}\right)}$$
$$= \frac{30}{3.9} = 7.69$$

17. (b)

	Instruction	Instruction size	Location
I ₁	Load r ₀ , 300	2 word	2000-2003
I ₂	MOV r ₁ , 5000	2 word	2004-2007
I ₃	MOV r ₂ , (r ₁)	1 word	2008-2009
I_4	Add r ₀ , r ₂	1 word	2010-2011
I_5	MOV, 6000, r ₀	2 word	2012-2015
I ₆	HALT	1 word	2016-2017

: Since 1 word is of 2 bytes.

If an interrupt occurs, the CPU has been halted after executing the HALT instruction, the return address 2016 is saved in the stack.

18. (b)

$$\begin{split} \mathsf{T}_{\text{avg}} &= \mathsf{h}_1 \, \mathsf{t}_1 + (1-\mathsf{h}_1) \mathsf{h}_2 \, (\mathsf{t}_2 + \mathsf{t}_1) + (1-\mathsf{h}_1) \, (1-\mathsf{h}_2) \, (\mathsf{t}_3 + \mathsf{t}_2 + \mathsf{t}_1) \\ &= 0.65 \times 0.02 + 0.35 \times 0.45 \times 0.22 + 0.35 \times 0.55 \times 2.22 \\ &= 0.013 + 0.03465 + 0.42735 \\ &= 0.475 = 475 \, \mu \text{sec} \end{split}$$

19. (b)

Biased exponent = 18 + 64 = 82

Representing 82 in binary

$$(82)_2 = (1010010)_2$$

Representing mantissa in binary

$$(0.625)_{10} = (0.10100000)$$

Floating point representation is as follows:

Sign bit	Exponent				Mantissa	
0	10,1001,0			10100000		
	5	2	ŀ	ł	0	

20. (c)

Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13
I ₁	FI	DI	FO	EI	WO								
I ₂		FI	DI	FO	EI	WO							
I ₃			FI	DI	FO	EI	WO						
I ₄				FI	DI	FO	EI						
I ₅					FI	DI	FO						
I ₆						FI	FO						
I ₇							FI	DI	FO	EI	WO		
I ₈								FI	DI	FO	EI	WO	
I ₉									FI	DI	FO	EI	WO
			То	tal =	13 *	12 = 1	156 n	s					

21. (d)

Instruction : "Load 1000"

Direct Addressing Mode: Since the content of location '1000' is '1300'. Hence, 1300 will be loaded. **Indirect Addressing Mode:** The content of location '1000' is '1300'. The content of memory location '1300' is '1200'. Hence, 1200 will be loaded.

Base (Indexed) Addressing Mode: $[1000 + 200] \Rightarrow [1200]$. The content of memory location '1200' is 800.

22. (b)

Vertical Microprogramming :

23. (a)

24.

Assume *x* % of instructions incur 3 stall cycles.

Speedup =
$$\frac{\text{Pipeline depth}}{(1 + \#\text{stall/Instruction})}$$
Number of stall / Instructions= (% Instruction don't incur stall × 0 + % Instruction incur stall × 3)
= $(1 - x) \times 0 + x (3) = 3x$
 \therefore $3 = \frac{5}{1 + 3x}$
 $3 + 9x = 5$
 $9x = 5 - 3 = 2$
 $x = 2/9 = 0.222$
In % = $0.222 \times 100 = 22.2$
(a)

= $(1 + 0.3) \times 0.05$ ns

= 0.065 ns

India's Best Institute for IES, GATE & PSUs

25. (c)

Number of stalls/Instruction = $(0.4 \times 0.4 \times 3) = 0.48$

Average instruction ET = $(1 + \# \text{ stalls / Instruction}) \times \text{Cycle time} = (1 + 0.48) \times 8 \text{ ns} = 11.84 \text{ ns}$

26. (b)

Sta	ck	k Accumulator		Register	-Memory	Load-store		
Push (A)	8 + 64	Load A	8 + 64		Load R ₁ , A	8 + 6 + 64	Load R ₁ , A	8 + 6 + 64
Push (B)	8 + 64	Add B	8 + 64		Add R ₃ , R ₁ , B	8 + 6 + 6 + 64	Load R ₂ , B	8 + 6 + 64
Add	8	Store C	8 + 64		Store R ₃ , C	8 + 6 + 64	Add R ₃ , R ₁ , R ₂	8+6+6+6
Pop (C)	8 + 64						Store R ₃ , C	8 + 6 + 64
= ;	= 224 bits = 216 bits = 240 bits = 260 bits							= 260 bits
	Total size = 224 + 216 + 240 + 260 = 940 bits							

27. (c)

251 opcodes \Rightarrow 8 bits for each register

 \therefore Opcode R_1, R_2, R_3, R_4

8 bits + 5 × 4 bits = 8 + 20 = 28 bits [:: 4 for 4 registers i.e., R_1, R_2, R_3, R_4].

1. 0

28. (d)

Format of single precision floating point is

ļ		32 bits	>
	S	Exponant	Mantissa
	1 bit	8 bits	23 bits
	0	10000111	1010000000000
	=	$1.M \times 2^{E-127}$ 1.1010 × 2 ^{135 - 127} (1.1010) ₂ × 2 ⁸ 1.625 × 2 ⁸ = (416) ₁₀	
n	8	416	

Octal representation

Octal representation is (640).

29. (a)

Number of registers in RISC = G + W (L + C)208 = G + 16 (8 + 4)G = 16

30. (c)

When instruction is a computation:

Memory reference : Fetch instruction Fetch reference of the operand Fetch operand

Total 3 memory references.

When instruction is a branch:

Memory reference : Fetch instruction

Fetch operand reference and loading program counter

Total 2 memory references.