
CLASS TEST

DETAILED EXPLANATIONS

1. (b)

0.514 × 8	=	4.112
0.112×8	=	0.896
0.896×8	=	7.168
0.168 × 8	=	1.344
0.344 × 8	=	2.752
(0.514) ₁₀	=	(0.40712) ₈

2. (a)

...

Since both PRESET & CLEAR are active low inputs, it will not affect to output status for a given condition. For J = 0, K = 0 input condition output of a JK FF holds. The previous value $Q^+ = Q$

3. (a)

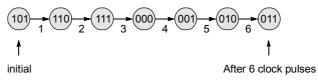
For successive approximation type ADC, conversion time remains the same for any analogue input.

$$\therefore \qquad t_{conv} = nT$$

$$T = Clock period$$

$$n = Number of bit$$

$$T = \frac{1}{1 \times 10^6} = 1 \,\mu s$$

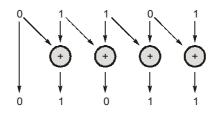

$$\therefore \qquad t_{con} = 12 \times 1 = 12 \,\mu s$$
(c)

5.

$$\frac{64}{2} = 32, \qquad \frac{32}{2} = 16, \qquad \frac{16}{2} = 8$$
$$\frac{8}{2} = 4, \quad \frac{4}{2} = 2, \quad \frac{2}{2} = 1$$
$$\therefore \qquad \text{Total} = 32 + 16 + 8 + 4 + 2 + 4$$

6. (d)

MOD-8 ripple up counter counts from 000 to 111


1 = 63

7. (a)

Number of chips required =
$$\frac{\text{Required size of RAM}}{\text{Available size of RAM}} = \frac{64K \times 16}{16K \times 8} = 4 \times 2 = 8$$

9. (b)

Binary to gray code conversion

10. (a)

k-map simplification

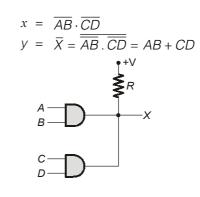
POS expression is

AB	C ₀₀	01	11	10	
0	1	1	1	0	
1	0		1	1	
F =	(Ā +	B) · ((A +)	<u></u> - -	C)

11. (b)

Octal number is obtained by 7's complement of 5264

Binary equivalent of $(2513)_8 = (010\ 101001\ 011)_2$


Hexadecimal equivalent of $(010\ 101001\ 011)_2 = (54B)_{16}$

12. (a)

Paralleling of two NAND gate at the input leads to a wire AND

 \therefore The logic expression at point *x*.

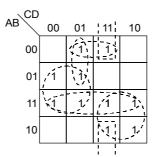
Hence,

13. (b)

Let *n* number of flip flop cascaded each having propagation delay of t_{pd} . Frequency of operation

$$\frac{1}{nt_{pd}} \ge 10 \text{ MHz}$$

$$n \le \frac{1}{t_{pd} \times 10 \text{ MHz}} \le \frac{1}{12 \times 10^{-9} \times 10^7} \le \frac{100}{12}$$

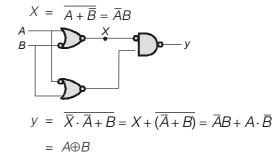

$$n = 8$$

For n = 8 MOD number of counter $2^8 = 256$

14. (a)

.:.

Drawing k-map


From above k-map it is clear the minterms 4, 10 are grouped only once. Hence the essential prime implicants are $B\overline{C}$, AC.

www.madeeasy.in

16. (a)

From figure,

Similarly,

:: X represent BORROW & y represents DIFFERENCE output.

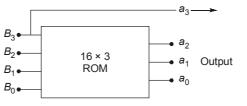
17. (c)

Step size =
$$\frac{\text{Full scale output}}{\text{Number of steps}} = \frac{5V}{2^8 - 1} = 19.607 \text{ mV}$$

Always fixed

For a digital input (10000010) = (130_{10}) analogue output $130 \times 19.607 = 2.549$ V

Error =
$$\pm \frac{0.5 \times 5}{100} = 0.025$$


Expected range of output 2.524 - 2.574 V

18. (a)

... ...

Number of input = 4

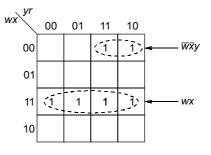
$$a_3 = B_3$$

 $a_2 = B_2 \oplus B_3$
 $a_1 = B_2 \oplus B_1$
 $a_0 = B_1 \oplus B_0$

Size of ROM requires $2^4 \times 3 = 16 \times 3$

19. (d)

Initial state to be 1000.


CLK	Α	в	С	D	х
Х	1	0	0	0	0
1	0	1	0	0	1
2	1	0	1	0	1
3	1	1	0	1	0
4	0	1	1	0	0
5	0	0	1	1	0
6	0	0	0	1	1
7	1	0	0	0	0

Hence after 7 clock pulses SIPO shift register comes back to initial state.

20. (a)

k-map simplification

21. (a)

MOD number of BCD counter = 10

MOD number of *n* bit Johnson counter = 2n

MOD number of *n* bit ring counter = n

: Hence MOD number of given counter arrangement = $10 \times 6 \times 2 = 120$

$$f_0 = \frac{f_{clk}}{120}$$

 $f_{ck} = f_0 \times 120 = 24 \text{ kHz}$

22. (a)

Output y will be high only it

 $J_2 = X = 1$ and C has a low-to-HIGH transition

X will be high only if

A = 1 and B has a LOW-to-HIGH transition.

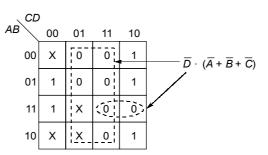
From above two conditions, it is clear that output y will go high for the following sequence A - B - C

Analysis:

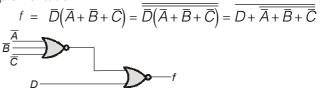
A = 1 and B goes high, A rising edge of B will trigger flip-flop \therefore $X = 1 [J_1 = 1; K_1 = 0]$ Now, C goes high. A rising edge of C will trigger flip-flop 2 \therefore $Y = 1 [J_2 = X = 1; K_2 = 0]$

23. (a)

X - Y = X + 2s complement of Y.


2's complement of
$$Y = 1$$
's complement + 1
= 0111100 + 1 = 0111101
 $X-Y = 1010100$
0111101
= **1**0010001

Discard carry, X - Y = 0010001



24. (b)

Drawing k-map

POS form is suitable for NOR gate implementation

NOT required 1 NOR gate.

: Total 5 NOR gates required.

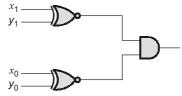
25. (a)

From figure

	Select line I_0 I_1 I_2 I_3 I_4 I_5 I_6
(c)	$Q^+ = \bar{Q}, 1 + Q, 1 = 1$
For $A = 1, B = 0$	
	$Q^+ = \overline{Q}, 1 + Q, 0 = \overline{Q}$
For <i>A</i> = 1, <i>B</i> = 1	
$Q^+ = \text{Next state}$	
	$Q^+ = D = y = \overline{Q}A + Q\overline{B}$
Q - Present state	
	$y = \overline{Q}A + Q\overline{B}$

26.

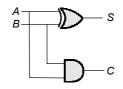
		Select line ABC	<i>I</i> 0 000	<i>I</i> 1 001	<i>I</i> 2 010	I 3 011	<i>I</i> 4 100	<i>I</i> 5 101	<i>I</i> 6 110	Ι ₇ 111
		D	0	2	4	6	8	10	12	14
		D	1	3	5	7	9	(11)	13	(15)
			D	D	0	D	1	D	0	1
27.	(b)									
	Analysis of the circuit,		J =	=	⊕ <i>x</i> ,	<i>k</i> =	J			
			x	Q	J	I	κ	Q+		
			0	0	1		0	1		
			0	1	0)	1	0		
			1	0	0)	1	0		
			1	1	1		0	1		
	<u>.</u>	Q(t +	• 1) =	= x (·)	1			


12 Electrical Engineering

28. (a)

Two numbers will be equal if $y_1 = x_1$ and $y_0 = x_0$ Ex-NOR logic gate outputs 1(HIGH) for the same input.

 \therefore Above condition will be implement as



29. (a)

8 bit binary parallel adder can be implemented by 7FA + 1HA

FA = Full adderHA = Half adder

Half adder

HA requires 1 Ex-OR & 1 AND gate. 1 HA costs 2 + 1 = 3 units

Full adder requires 2HA & 1 OR gate

 \therefore We total require, 15HA & 7OR gate

...

Total cost = $15 \times \text{cost}$ of HA + 7 × cost of OR gate

 $= 15 \times 3 + 7 \times 1$

= 52 units

30. (*)

Question data insufficient.