

DETAILED EXPLANATIONS

1. (b)

The signal flow graph for the given block diagram can be drawn as

As per signal flow graph, the loops are

$$
\begin{aligned}
& L_{1}=G_{2} G_{3}(-1)=-G_{2} G_{3} \\
& L_{2}=G_{1} G_{2} H_{1}(-1)=-G_{1} G_{2} H_{1} \\
& L_{3}=G_{1} G_{2} H_{1}(-1)=-G_{1} G_{2} H_{1} \\
& L_{4}=G_{1}(-1)(-1) G_{2} H_{1}(-1)=-G_{1} G_{2} H_{1} \\
& L_{5}=G_{1}(-1)(-1) G_{2} H_{1}(-1)=-G_{1} G_{2} H_{1} \\
& \therefore \quad \Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}+L_{5}\right) \\
& =1-\left(-G_{2} G_{3}-G_{1} G_{2} H_{1}-G_{1} G_{2} H_{1}-G_{1} G_{2} H_{1}-G_{1} G_{2} H_{1}\right) \\
& =1+G_{2} G_{3}+2 G_{1} G_{2} H_{1}+2 G_{1} G_{2} H_{1} \\
& =1+G_{2} G_{3}+4 G_{1} G_{2} H_{1} \\
& \text { and } \quad P_{1}=G_{1} G_{2} G_{3} \\
& \Delta_{1}=1 \\
& P_{2}=G_{1}(-1)=-G_{1} \\
& \Delta_{2}=1 \\
& \therefore \quad \frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1}\left(G_{2} G_{3}-1\right)}{1+G_{2} G_{3}+4 G_{1} G_{2} H_{1}}
\end{aligned}
$$

2. (c)

Given, $\quad y(t)=2 t e^{-5 t}$

$$
x(t)=u(t)
$$

Taking Laplace transform, we get,

$$
Y(s)=\frac{2}{(s+5)^{2}} \quad \text { and } \quad X(s)=\frac{1}{s}
$$

\therefore Overall transfer function,

$$
\frac{Y(s)}{X(s)}=\frac{2 s}{(s+5)^{2}}
$$

3. (b)

The characteristic equation of the given system is,

$$
1+G(s) H(s)=1+\frac{K}{4 s^{3}+2 s^{2}+3 s}=0
$$

or

$$
4 s^{3}+2 s^{2}+3 s+K=0
$$

Using Routh's tabular form,

s^{3}	4	3
s^{2}	2	K
s^{1}	$\frac{6-4 K}{2}$	
s^{0}	K	

For stability,

$$
K>0
$$

and

$$
\frac{6-4 K}{2}>0
$$

or

$$
4 K<6
$$

$$
K<\frac{3}{2}
$$

So, the required condition is $0<K<\frac{3}{2}$.
4. (a)

The closed loop transfer function,

$$
\frac{C(s)}{R(s)}=\frac{12}{s(s+5)+12}=\frac{12}{s^{2}+5 s+12}
$$

Here, on comparing with standard second order transfer function, we get,
and

$$
\begin{aligned}
\omega_{n} & =\sqrt{12} \\
\xi \omega_{n} & =\frac{5}{2}
\end{aligned}
$$

For 2\% tolerance,

$$
\tau_{s}=\frac{4}{\xi \omega_{n}}=\frac{4}{5 / 2}=\frac{8}{5}=1.6 \mathrm{sec}
$$

5. (d)

$$
G(s) H(s)=\frac{K\left(s^{2}+2 s+10\right)}{\left(s^{2}+6 s+10\right)}
$$

For, $s^{2}+6 s+10=0$

$$
s=\frac{-6 \pm \sqrt{36-40}}{2}=-3 \pm j
$$

For, $s^{2}+2 s+10=0$

$$
\begin{aligned}
s & =\frac{-2 \pm \sqrt{4-40}}{2}=-1 \pm j 3 \\
\therefore \quad G(s) H(s) & =\frac{K(s+1+j 3)(s+1-j 3)}{(s+3+j)(s+3-j)}
\end{aligned}
$$

\therefore There will be no break points.
6. (c)

The characteristic equation is,
$1+G(s) H(s)=0$

$$
\begin{array}{r}
s(s+3)(s+4)+5(s+2)=0 \\
s^{3}+7 s^{2}+12 s+5 s+10=0 \\
s^{3}+7 s^{2}+17 s+10=0
\end{array}
$$

s^{3}	1	17
s^{2}	7	10
s^{1}	$\frac{17 \times 7-10}{7}$	
s^{0}	10	

\because The total number of sign change in the first column of Routh array is zero.
\therefore Number of poles on LHS $=3$.
7. (b)

The standard form of transfer function of the compensator is

$$
G_{c}(s)=\alpha \frac{1+s T}{1+\alpha s T}
$$

\therefore In time constant form,

$$
G_{c}(s)=\frac{1(1+100 s)}{10(1+10 s)}
$$

Here, $T=100$ and $\alpha T=10$
or

$$
\alpha=\frac{10}{100}=0.1
$$

$\because \alpha<1 \therefore$ Lead compensator.
8. (b)

The characteristic equation is given by

$$
|s I-A|=0
$$

$$
\begin{array}{rlrl}
{\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]} & =\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right] \\
\therefore & & |s I-A| & =\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right]=s^{2}+1 \\
s & = \pm j
\end{array}
$$

As the roots are purely imaginary, thus the system has undamped response.
9. (b)

For $\omega=0$, the plot starts at 0°, that means there will be no pole at origin, hence the type of the system is 0 .
For $\omega=\infty$, the plot terminates at 270° i.e., the order of the system should be 3 .
10. (a)

As the initial slope is $0 \mathrm{~dB} / \mathrm{dec}$.

$$
\begin{aligned}
20 \log K & =-20 \\
\log K & =-1
\end{aligned}
$$

or $\quad K=0.1$
at $\omega=1 \mathrm{rad} / \mathrm{sec}$, the slope changes to $20 \mathrm{~dB} / \mathrm{dec}$, thereby adds a zero at $\omega=1 \mathrm{rad} / \mathrm{sec}$
at $\omega=10 \mathrm{rad} / \mathrm{sec}$, the slope changes to $0 \mathrm{~dB} / \mathrm{dec}$ thereby adds a pole at $\omega=10 \mathrm{rad} / \mathrm{sec}$.
at $\omega=100 \mathrm{rad} / \mathrm{sec}$, the slope changes to $-40 \mathrm{~dB} / \mathrm{dec}$ thereby adds two poles at $\omega=100 \mathrm{rad} / \mathrm{sec}$
\therefore Resultant transfer function is,

$$
T(s)=\frac{0.1\left(\frac{s}{1}+1\right)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)^{2}}=\frac{10^{4}(s+1)}{(s+10)(s+100)^{2}}
$$

11. (d)

The location of the poles are given by, $-\xi \omega_{n} \pm j \omega_{d}$
where,

$$
\begin{align*}
\xi & =\text { damping ratio } \tag{i}\\
\omega_{n} & =\text { natural frequency of oscillation } \\
\omega_{d} & =\text { damped frequency of oscillation }
\end{align*}
$$

Using maximum peak overshoot, the value of ξ can be obtained as

$$
\begin{aligned}
e^{-\pi \xi / \sqrt{1-\xi^{2}}} & =0.15 \\
\frac{\xi}{\sqrt{1-\xi^{2}}} & =0.604
\end{aligned}
$$

Squaring both the sides,

$$
\begin{array}{ll}
& \xi^{2}=0.364\left(1-\xi^{2}\right) \\
\text { or } & \xi^{2}=\frac{0.364}{1.364}=0.267 \\
\text { or } & \xi=0.517
\end{array}
$$

now, peak time, $\tau_{p}=\frac{\pi}{\omega_{d}}=3$
or

$$
\omega_{d}=\frac{\pi}{3}=1.047 \mathrm{rad} / \mathrm{sec}
$$

$\because \quad \omega_{d}=\omega_{n} \sqrt{1-\xi^{2}}$
\therefore From equation (ii) and (iii), we have

$$
\begin{align*}
& \omega_{n}=\frac{\omega_{d}}{\sqrt{1-\xi^{2}}}=\frac{1.047}{\sqrt{1-0.517^{2}}} \\
& \omega_{n}=1.223 \mathrm{rad} / \mathrm{sec} \tag{iv}
\end{align*}
$$

\therefore Location of poles are,

$$
\begin{aligned}
P & =-\xi \omega_{n} \pm j \omega_{d} \\
& =-(0.517 \times 1.223) \pm j 1.047 \\
& =-0.632 \pm j 1.047
\end{aligned}
$$

12. (d)

Steady state error,

$$
\begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} s E(s) \\
& =\lim _{s \rightarrow 0} s \times \frac{R(s)}{1+G(s) H(s)} \\
& =\lim _{s \rightarrow 0} \frac{s \times\left(2+\frac{5}{s}\right) \times \frac{1}{s}}{1+\frac{K}{s(s+3)}} \\
& =\lim _{s \rightarrow 0} \frac{\frac{s(2 s+5)}{s}}{s[s(s+3)+K]} \\
& =\lim _{s \rightarrow 0} \frac{\frac{(2 s+5)}{s} \times s(s+3)}{\left(s^{2}+3 s+K\right)} \\
& =\lim _{s \rightarrow 0} \frac{(2 s+5)(s+3)}{s^{2}+3 s+K} \\
2.75 & =\frac{15}{K} \\
K & =\frac{15}{2.75}=5.45
\end{aligned}
$$

13. (d)

For any point to lie on the root locus the angle condition must be satisfied.

$$
\begin{aligned}
\left.\angle G(s) H(s)\right|_{s=(-1+j 2)} & = \pm 180^{\circ} \\
\left.\therefore \quad G(s) H(s)\right|_{s=(-1+j 2)} & =\frac{K(-1+j 2+1)}{(-1+j 2+9)(-1+j 2+3)}=\frac{K(j 2)}{(8+j 2)(2+j 2)} \\
\left.\therefore \quad \angle G(s) H(s)\right|_{s=-1+j 2} & =90^{\circ}-\tan ^{-1}\left(\frac{2}{8}\right)-\tan ^{-1}(1) \\
& =90^{\circ}-14.036^{\circ}-45^{\circ} \\
& =30.96^{\circ} \\
\left.\because \quad \angle G(s) H(s)\right|_{s=s_{0}} & \neq \pm 180^{\circ}
\end{aligned}
$$

Angle condition does not satisfy.
14. (b)

The steady state error is defined by

$$
\begin{aligned}
e_{s s} & =\lim _{s \rightarrow 0} \frac{s \times \frac{1}{s^{2}}}{1+\frac{(s+\alpha)}{s} \times \frac{(s+2)}{s^{2}-1}} \\
& =\lim _{s \rightarrow 0} \frac{\left(s^{2}-1\right)}{s\left(s^{2}-1\right)+(s+\alpha)(s+2)}
\end{aligned}
$$

$$
\begin{aligned}
e_{S S} & =-\frac{1}{2 \alpha} \\
\therefore \quad S_{\alpha}^{e_{S S}} & =\frac{\frac{\partial e_{S S}}{\frac{e_{S S}}{\partial \alpha}}=\frac{\partial e_{S S}}{\partial \alpha} \times \frac{\alpha}{e_{S S}}=\frac{\partial}{\partial \alpha}\left(\frac{-1}{2 \alpha}\right) \times \frac{\alpha}{-\frac{1}{2 \alpha}}}{} \quad=-\frac{\alpha^{2}}{\alpha^{2}}=-1
\end{aligned}
$$

15. (a)

The characteristic equation is,

$$
\begin{align*}
K(s-2)+(s+1)(s+2) & =0 \\
s^{2}+3 s+2+K s-2 K & =0 \\
\text { or } s^{2}+(3+K) s+(2-2 K) & =0 \tag{i}
\end{align*}
$$

It is required that one pole should lie at origin. Let other pole lie at $-x$.
\therefore Required characteristic equation becomes

$$
\begin{equation*}
(s+0)(s+x)=0 \tag{ii}
\end{equation*}
$$

or $\quad s^{2}+x s=0$
On comparing (i) and (ii), we have

$$
\begin{aligned}
2-2 K & =0 \\
\text { or } \quad 2 K & =2 \\
K & =1
\end{aligned}
$$

16. (c)

The characteristic equation is,

$$
\begin{aligned}
1+G(s) H(s) & =0 \\
s^{2}(s+a)+K\left(s+\frac{4}{3}\right) & =0
\end{aligned}
$$

For $K=6$

$$
s^{3}+a s^{2}+6 s+8=0
$$

Using Routh's method for $3^{\text {rd }}$ order system for stability,

$$
\begin{aligned}
6 a & \geq 8 \\
a & \geq \frac{8}{6} \\
a & \geq \frac{4}{3}
\end{aligned}
$$

\therefore For system to be unstable $a<\frac{4}{3}=1.33$
17. (c)

The characteristic equation is,

$$
\begin{array}{r}
1+G(s)=0 \\
s(s+1)(s+2)(s+4)+K=0 \\
s^{4}+7 s^{3}+14 s^{2}+8 s+K=0
\end{array}
$$

Using Routh's tabular form, we have

s^{4}	1	14	K
s^{3}	7	8	
s^{2}	12.86	K	
s^{1}	$\frac{102.88-7 K}{12.86}$		
s^{0}	K		

For system to be oscillatory

$$
\frac{102.8-7 K}{12.86}=0 \quad \Rightarrow K \approx 14.697
$$

\therefore Auxiliary equation,

$$
\begin{array}{rlrl}
& 12.86 s^{2}+K & =0 \\
& & s^{2} & =\frac{-K}{12.86}=-\frac{14.697}{12.86}=-1.142 \\
\text { or } & s & = \pm j 1.07 \\
\therefore & \omega & =1.07 \mathrm{rad} / \mathrm{sec}
\end{array}
$$

18. (d)

$$
\frac{V_{0}(s)}{V_{s}(s)}=\frac{R_{2}}{\frac{R_{1}}{R_{1} C s+1}+R_{2}}=\frac{R_{2}\left(R_{1} C s+1\right)}{R_{1}+R_{2}+R_{1} R_{2} C s}
$$

By rearranging, we get,

$$
\begin{aligned}
\frac{V_{0}(s)}{V_{s}(s)} & =\frac{R_{2}}{R_{1}+R_{2}} \times\left(\frac{1+R_{1} C s}{1+\frac{R_{2}}{R_{1}+R_{2}} \cdot R_{1} C s}\right) \\
\therefore \quad \alpha & =\frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

19. (b)

The phase margin is given by,

$$
\begin{aligned}
\mathrm{PM} & =180^{\circ}+\phi \\
60^{\circ} & =180^{\circ}+\left[-90^{\circ}-\tan ^{-1} \omega-\tan ^{-1} \frac{\omega}{3}\right] \\
-30^{\circ} & =-\tan ^{-1}\left(\frac{\frac{\omega}{1}+\frac{\omega}{3}}{1-\frac{\omega^{2}}{3}}\right) \\
\tan 30^{\circ} & =\frac{\omega+\frac{\omega}{3}}{1-\frac{\omega^{2}}{3}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{1}{\sqrt{3}} & =\frac{\frac{4 \omega}{3}}{1-\frac{\omega^{2}}{3}} \\
\text { or } & 1-\frac{\omega^{2}}{3} & =\frac{4 \omega}{\sqrt{3}} \\
\Rightarrow & \omega^{2}+4 \sqrt{3} \omega-3 & =0
\end{array}
$$

On solving the above equation, we get,

$$
\omega=0.408 \mathrm{rad} / \mathrm{sec} \text { and }-7.33 \mathrm{rad} / \mathrm{sec}
$$

Considering positive value of frequency for $\omega=\omega_{\mathrm{gc}^{\prime}}$, we have,

$$
\begin{aligned}
|G(j \omega) H(j \omega)|_{\omega=\omega_{\mathrm{gc}}} & =1 \\
\frac{K}{\omega \sqrt{\omega^{2}+1} \sqrt{\omega^{2}+9}} & =1 \\
K & =0.408 \sqrt{1.166} \times \sqrt{9.166} \\
K & =1.33
\end{aligned}
$$

20. (b)

From the given state model, the transfer function can be calculated as

$$
\begin{aligned}
T(s) & =C(s I-A)^{-1} B \\
& =\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{T}\left[\begin{array}{cc}
s & -1 \\
2 & s+5
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right] \times \frac{1}{s(s+5)+2}\left[\begin{array}{cc}
s+5 & 1 \\
-2 & s
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right] \times \frac{1}{s(s+5)+2}\left[\begin{array}{l}
1 \\
s
\end{array}\right] \\
T(s) & =\frac{1+2 s}{s^{2}+5 s+2}
\end{aligned}
$$

\therefore Open loop transfer function for unity negative feedback system becomes

$$
G(s)=\frac{1+2 s}{s^{2}+5 s+2-2 s-1}=\frac{1+2 s}{s^{2}+3 s+1}
$$

For unit step input,

$$
\begin{aligned}
& K_{p}=\lim _{s \rightarrow 0} G(s) H(s)=\lim _{s \rightarrow 0} \frac{1+2 s}{s^{2}+3 s+1}=1 \\
\therefore \quad & e_{s s}=\frac{1}{1+K_{p}}=\frac{1}{2}=0.5
\end{aligned}
$$

21. (c)

The state diagram of the system shown in below figure is the cascade of the state diagram of two sub-systems.

From this state diagram, the input output equations can be written as

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-5 x_{1}-4 x_{2}+3 x_{3}+6 u \\
\dot{x}_{3} & =-2 x_{3}+6 u \\
y & =2.5 x_{1}+x_{2} \\
\therefore \quad\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
-5 & -4 & 3 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
0 \\
6 \\
6
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
2.5 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

22. (b)

The closed loop transfer function has the characteristic equation,

$$
\begin{array}{r}
(s+1)(s+10)+10 K=0 \\
s^{2}+11 s+10+10 K=0
\end{array}
$$

On comparing with standard second order system, we have,

$$
\begin{aligned}
& 2 \xi \omega_{n}=11 \\
& \text { or } \\
& \xi \omega_{n}=\frac{11}{2} \\
& \because \quad M_{r}=1.58 \\
& \therefore \quad M_{r}=\frac{1}{2 \xi \sqrt{1-\xi^{2}}}=1.58 \\
& \frac{1}{1.58}=2 \xi \sqrt{1-\xi^{2}} \\
& 0.100=\xi^{2}\left(1-\xi^{2}\right) \\
& \text { or } \quad \xi^{4}-\xi^{2}+0.100=0 \\
& \text { or } \quad \xi^{2}=0.8872 \text { and } 0.112 \\
& \Rightarrow \quad \xi=0.9419 \text { and } 0.334 \\
& \because \quad \xi<0.707 \\
& \therefore \quad \quad \xi=0.334 \text { has to be considered } \\
& \text { and hence, } \\
& \omega_{n}=\frac{11}{2 \times 0.334}=16.434 \\
& \therefore \quad 10+10 \mathrm{~K}=\omega_{n}^{2}=270.089 \\
& 10 K=260.089 \\
& \text { or } \\
& K=26.008 \approx 26
\end{aligned}
$$

23. (c)

The initial part of the resultant magnitude plot is a straight line with a slope of $-20 \mathrm{~dB} / \mathrm{decade}$. It corresponds to a pole at the origin.

Corner frequencies $=2.5 \mathrm{rad} / \mathrm{sec}, 40 \mathrm{rad} / \mathrm{sec}$
Each corner frequency contributes a slope of $-20 \mathrm{~dB} / \mathrm{dec}$, so both corner frequencies represent the poles of system,

$$
\text { T.F. }=\frac{K}{s\left(\frac{s}{\omega_{c 1}}+1\right)\left(\frac{s}{\omega_{c 2}}+1\right)}
$$

Here,

$$
\begin{aligned}
\omega_{c 1} & =2.5 \\
\omega_{c 2} & =40 \\
\text { T.F. } & =\frac{K}{s\left(\frac{s}{2.5}+1\right)\left(\frac{s}{40}+1\right)}
\end{aligned}
$$

and

In low frequency region $\omega<\omega_{c 1}$
approximate, \quad T.F. $=\frac{K}{S}$

$$
\left.T(j \omega)\right|_{\mathrm{dB}}=20 \log K-20 \log \omega
$$

at $\omega=\omega_{\mathrm{c} 1}, \quad|T(j \omega)|=40 \mathrm{~dB}$

$$
40=20 \log K-20 \log 2.5
$$

$$
20 \log K=47.96
$$

$$
\log K=2.399
$$

$$
K=10^{2.4}=251
$$

So,

$$
T(s)=\frac{251}{s(1+0.4 s)(1+0.025 s)}
$$

24. (c)

For controllability,

$$
\left|Q_{c}\right|=|B: A B| \neq 0
$$

Given,

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
0 & 1 \\
-1 & -3
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
A B & =\left[\begin{array}{cc}
0 & 1 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-7
\end{array}\right] \\
\left|Q_{c}\right| & =\left[\begin{array}{cc}
1 & 2 \\
2 & -7
\end{array}\right] \\
Q_{c} & =-7-4=-11 \neq 0
\end{aligned}
$$

The system is controllable,
For observability,

$$
\left|Q_{o}\right|=\left|C^{T}: A^{T} C^{T}\right| \neq 0
$$

$$
\begin{aligned}
A^{T} C^{T} & =\left[\begin{array}{ll}
0 & -1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] \\
\left|Q_{0}\right| & =\left|\begin{array}{ll}
1 & -1 \\
1 & -2
\end{array}\right|=-2+1=-1 \neq 0
\end{aligned}
$$

The system is observable.
25. (c)

$$
G(s)=\frac{1+0.5 s}{1+1.25 s}
$$

By comparing standard equation,

$$
\frac{E_{0}(s)}{E_{i}(s)}=\frac{1+s T}{1+s \beta T}
$$

Where,

$$
\beta=\frac{R_{1}+R_{2}}{R_{2}}
$$

and

$$
\begin{aligned}
T & =R_{2} C \\
T & =0.5 \\
R_{2} & =\frac{0.5}{10 \times 10^{-6}}=0.5 \times 10^{5}=50 \mathrm{k} \Omega \\
\beta T & =1.25 \\
\beta & =2.5=1+\frac{R_{1}}{R_{2}} \\
R_{1} & =1.5 R_{2}=75 \mathrm{k} \Omega
\end{aligned}
$$

26. (d)

The characteristic equation is

$$
s^{2}+1.6 s+16=0
$$

comparing with the second order characteristic equation i.e.

$$
\begin{aligned}
s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2} & =0 \\
2 \xi \omega_{n} & =1.6
\end{aligned}
$$

and

$$
\omega_{n}=\sqrt{16}=4 \mathrm{rad} / \mathrm{sec}
$$

then damping ratio for the system without derivative feedback control is

$$
\begin{aligned}
\xi & =\frac{1.6}{2 \omega_{n}}=\frac{1.6}{2 \times 4}=0.2 \\
\frac{C(s)}{R(s)} & =\frac{\left(1+s T_{d}\right) \omega_{n}^{2}}{s^{2}+\left(2 \xi \omega_{n}+\omega_{n}^{2} T_{d}\right) s+\omega_{n}^{2}} \\
\xi^{\prime} & =\frac{2 \xi \omega_{n}+\omega_{n}^{2} T_{d}}{2 \omega_{n}}=\xi+\frac{\omega_{n} T_{d}}{2} \\
0.8 & =0.2+\frac{4 T_{d}}{2} \\
T_{d} & =0.3
\end{aligned}
$$

27. (c)

Forward paths:

$$
\begin{array}{ll}
F_{1}=G_{1} G_{2} G_{3} G_{4} & ; \quad \Delta_{1}=1 \\
F_{2}=G_{1} G_{6} G_{4} & ; \quad \Delta_{2}=1 \\
F_{3}=G_{1} G_{7} & ; \quad \Delta_{3}=1-G_{5}
\end{array}
$$

Individual loops:

$$
L_{1}=G_{2} H_{1} \quad ; \quad L_{2}=G_{5}
$$

Two non-touching loops,

$$
\begin{aligned}
L_{12} & =G_{2} H_{1}\left(G_{5}\right) \\
\Delta & =1-G_{2} H_{1}-G_{5}+G_{2} H_{1} G_{5} \\
\therefore \quad \frac{X_{5}}{X_{1}} & =\frac{G_{1} G_{2} G_{3} G_{4}+G_{1} G_{4} G_{6}+G_{1} G_{7}\left(1-G_{5}\right)}{1-G_{2} H_{1}+G_{2} G_{5} H_{1}-G_{5}}
\end{aligned}
$$

28. (d)

Characteristics equation is

$$
s^{5}-2 s^{4}-2 s^{3}+4 s^{2}+s-2=0
$$

s^{5}	1	-2	1
s^{4}	-2	4	-2
s^{3}	$0(-1)$	$0(1)$	0
s^{2}	2	-2	0
s^{1}	$0(4)$	0	0
s^{0}	-2		

Auxiliary equation- 1 is,

$$
\begin{aligned}
-2 s^{4}+4 s^{2}-2 & =0 \\
\frac{d}{d s}\left(-2 s^{4}+4 s^{2}-2\right) & =0 \\
-8 s^{3}+8 s & =0 \\
-s^{3}+s & =0
\end{aligned}
$$

Auxiliary equation-2 is,

$$
\begin{aligned}
2 s^{2}-2 & =0 \\
\frac{d}{d s}\left(2 s^{2}-2\right) & =0 \\
4 s & =0
\end{aligned}
$$

3 sign changes in the first column.
Therefore 3 poles are in RHP out of which 2 are symmetric.
29. (a)

$$
\begin{array}{r}
1+K G=0 \\
s^{3}+6 s^{2}+12 s+K s+8-4 K=0 \\
\left(s^{3}+6 s^{2}+12 s+8\right)+K(s-4)=0 \\
1+\frac{K(s-4)}{s^{3}+6 s^{2}+12 s+8}=0
\end{array}
$$

\therefore Open loop transfer function,

$$
G(s)=\frac{(s-4)}{s^{3}+6 s^{2}+12 s+8}
$$

s^{3}	1	12
s^{2}	6	8
s^{1}	$\frac{72-8}{6}=10.66$	
s^{0}	8	

There is no sign change in first column of RH table.
\therefore Open loop system is stable.
30. (d)

$$
\begin{aligned}
K_{v} & =\lim _{s \rightarrow 0} s \cdot G(s) \\
K_{v} & =\lim _{s \rightarrow 0} s \cdot \frac{K(s+10)(s+15)}{s(s+3)(s+7)(s+20)} \\
K_{v} & =\frac{K(10)(15)}{(3)(7)(20)}=\frac{K(5)}{14} \\
e_{s s} & =\frac{25}{K_{v}}=\frac{25}{K(5)} \times 14 \\
0.1 & =\frac{5 \times 14}{K} \\
K & =\frac{5 \times 14}{0.1}=700
\end{aligned}
$$

