HYDROLOGY

CIVIL ENGINEERING

Date of Test : 31/05/2023

ANSWER KEY

1. (b)
2. (d)
3. (a)
4. (d)
5. (b)
6. (a)
7. (b)
8. (b)
9. (c)
10. (c)
11. (d)
12. (c)
13. (a)
14. (a)
15. (c)
16. (a)
17. (a)
18. (a)
19. (d)
20. (b)
21. (b)
22. (d)
23. (b)
24. (a)
25. (a)
26. (c)
27. (d)
28. (c)
29. (d)
30. (b)

DETAILED EXPLANATIONS

3. (d)

$$
\begin{array}{rlrl}
\text { Area of UH } & =\text { C.A. } \times 0.01 \\
\Rightarrow & & \frac{1}{2} \times 84 \times 3600 \times 200 & =\text { C.A. } \times 0.01 \\
\Rightarrow & \text { C.A. } & =3024 \times 10^{6} \mathrm{~m}^{2} \\
\Rightarrow & \text { C.A. } & =3024 \mathrm{~km}^{2}
\end{array}
$$

(where C.A. is catchment area)
4. (a)

$$
\begin{aligned}
T & =200 \text { years } \\
y_{T} & =\text { Reduced variate }=-\ln \cdot \ln \cdot\left(\frac{T}{T-1}\right)=-\ln \cdot \ln \cdot\left(\frac{200}{200-1}\right) \\
\Rightarrow \quad y_{T} & =5 \cdot 296 \simeq 5.3
\end{aligned}
$$

5. (b)

$$
\begin{array}{rlrl}
\text { Peak of DRH } & =135-10=125 \mathrm{~m}^{3} / \mathrm{s} \\
P & =54 \mathrm{~mm}, \quad \phi=4 \mathrm{~mm} / \mathrm{hr} \\
\therefore & & R & =P-\phi \times t=54-4 \times 1=50 \mathrm{~mm}=5 \mathrm{~cm} \\
\therefore \quad & & \text { Peak of } 1 \mathrm{hr} \mathrm{UH} & =\frac{125}{5}=25 \mathrm{~m}^{3} / \mathrm{s}
\end{array}
$$

6. (c)

For a given catchment IUH, being independent of rainfall characteristics, is indicative of the catchment storage characteristics.
7. (d)

State is defined as the water surface elevation measured above a datum:
Manual stage measurements are done using.
(i) Staff gauge
(ii) Wire gauge

Automatic stage measurements are done using
(i) Float gauge recorder
(ii) Bubble gauge

Stage data is presented in the form of plot of stage against chronological time known as stage hydrograph.
8. (b)

Drizzle is a fine sprinkle of numerous water droplets of size less than 0.5 mm and intensity less then $1 \mathrm{~mm} / \mathrm{hr}$.
9. (c)

Symon's raingauge is non-recording type raingauge.
10. (a)

The rising limb of a hydrograph is also known as concentration curve and it represents the increase in discharge due to the gradual building up of storage in channels and over the catchment surface.
11. (d)

$$
\text { Total rainfall }=0.6+3.0+1.8=5.4 \mathrm{~cm}
$$

$$
\text { Excess rainfall }=5.4-3.5=1.9 \mathrm{~cm}
$$

Excess rainfall duration, $t_{e}=2 \times 3=6 \mathrm{hrs}$

$$
\phi \text {-index }=1.9 / 6=0.317 \mathrm{~cm} / \mathrm{hr}
$$

This value being more than $\frac{0.6}{2}=0.3 \mathrm{~cm} / \mathrm{hr}$, the excess rainfall duration will reduce by 2 hours.

$$
\begin{aligned}
\therefore & t_{e} & =4 \text { hours } \\
& \text { Excess rainfall } & =3+1.8-3.5=1.3 \mathrm{~cm} \\
& \phi \text {-index } & =1.3 / 4=0.325 \mathrm{~cm} / \mathrm{hr}
\end{aligned}
$$

13. (a)
$P($ at least once $)$ in 20 years $=1-\left(1-\frac{1}{T}\right)^{n}=1-\left(1-\frac{1}{40}\right)^{20}=0.397 \simeq 40 \%$
14. (a)

On comparison with the Horton's equation in the standard form, $f_{c}=6 \mathrm{~mm} / \mathrm{hr}, f_{o}=22 \mathrm{~mm} / \mathrm{hr}$ and $k=2 / h$.
Since the rainfall intensity is more than $f_{o^{\prime}}$, the infiltration takes place at the capacity rate throughout the storm. Hence the commutative depth of infiltration for the first 45 minutes is given by,

$$
\begin{aligned}
f & =\int_{0}^{3 / 4} f d t=\int_{0}^{0.75}\left(6+16 e^{-2 t}\right) d t=\left[6 t-8 e^{-2 t}\right]_{0}^{0.75}=\left[6 \times 0.75-8 \times e^{-1.5}\right]-[0-8] \\
& =10.715 \mathrm{~mm}
\end{aligned}
$$

16. (a)

$$
\begin{aligned}
\text { Direct runoff } & =\frac{1}{2} \times 64 \times 3600 \times 36=4147200 \mathrm{~m}^{3}=4.1472 \times 10^{6} \mathrm{~m}^{3} \\
\text { Effective rainfall } & =1 \mathrm{~cm} \\
\therefore \quad \text { Catchment area } & =\frac{4.147 \times 10^{6}}{1} \times 10^{2} \mathrm{~m}^{2}=414.72 \mathrm{~km}^{2} \\
\therefore \quad \text { Equilibrium discharge } & =2.778 \times \frac{A}{D}=2.778 \times \frac{414.72}{6}=192.02 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

17. (b)

$$
\therefore \quad A=\frac{0.36 \times \sum \text { Ordinates } \times \Delta t}{h}=\frac{0.36 \times 105 \times 1}{3}=12.60 \mathrm{~km}^{2}=1260 \text { ha }
$$

18. (c)

$$
\begin{array}{rlrl}
P & =(10+30+40+50+25+8) \times \frac{30}{60}=81.5 \mathrm{~mm} \\
R & =38 \mathrm{~mm} \\
\therefore \quad & W_{\text {index }} & =\frac{P-R}{t}=\frac{81.5-38}{(180 / 60)}=14.5 \mathrm{~mm} / \mathrm{hr} \\
\therefore \quad & \phi_{\text {index }} & =\frac{81.5-38-(10+8) 0.5}{(180-30-30) / 60}=17.25 \mathrm{~mm} / \mathrm{hr}
\end{array}
$$

Check:

$$
\begin{aligned}
\text { Runoff } & =[(30-17.25)+(40-17.25)+(50-17.25)+(25-17.25)] \frac{30}{60} \\
& =38 \mathrm{~mm} \text { which is same as given in question }
\end{aligned}
$$

19. (d)

From water budget equation,

$$
\begin{aligned}
\mathrm{P}+\mathrm{R}-\mathrm{G}-\mathrm{E}-\mathrm{T} & =\Delta \mathrm{S} \\
\text { Total rainfall, } P & =10 \mathrm{~mm}
\end{aligned}
$$

Antecedent moisture at root in the soil $=5 \mathrm{~mm}$
Loss of water due to seepage $=2.5 \mathrm{~mm}$
Loss of water due to percolation $=2 \mathrm{~mm}$
Surface runoff $=3 \mathrm{~mm}$
Moisture retained in the soil $=1 \mathrm{~mm}$

$$
\begin{array}{rlrl}
\text { So, } 10+5-2.5-2-3-T & =1 \\
\Rightarrow & 7.5-T & =1 \\
\Rightarrow & T & =6.5 \mathrm{~mm}
\end{array}
$$

\therefore Amount of evapotranspiration $=6.5 \mathrm{~mm}$
20. (c)

By Inglis formula, $\quad Q_{P}=\frac{124 A}{\sqrt{A+10.4}}=\frac{124 \times 38.6}{\sqrt{38.6+10.4}}=683.77 \mathrm{~m}^{3} / \mathrm{sec}$
21. (a)

$$
\begin{aligned}
Q & =\frac{Q_{t}\left(C_{1}-C_{2}\right)}{C_{2}-C_{0}} \\
Q_{t} & =10 \mathrm{~cm}^{3} / \mathrm{sec}=10 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s} \\
C_{1} & =20 \mathrm{mg} / l=20 \mathrm{ppm}=20 \times 10^{3} \mathrm{ppb}, \\
C_{2} & =5 \mathrm{ppb}, \\
C_{0} & =0 \\
\therefore \quad Q & =10 \times 10^{-6} \times\left(\frac{20 \times 10^{3}-5}{5-0}\right) \mathrm{m}^{3} / \mathrm{s}=0.040 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

22. (d)

The risk involved is 0.20 and $n=2$ years

$$
\begin{aligned}
\therefore & 0.20 & =1-\left(1-\frac{1}{T}\right)^{2} \\
\Rightarrow & T & =9.47 \text { years } \\
\Rightarrow & T & \simeq 9.5 \text { years }
\end{aligned}
$$

23. (a)

Total rainfall,

$$
\begin{aligned}
P & =(3.5+6.5+8.5+7.8+6.4+4.0+4.0+6.0) \times \frac{30}{60} \\
& =23.35 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Total rainfall excess }=[(6.5-4.5)+(8.5-4.5)+(7.8-4.5)+(6.4-4.5)+(6.0-4.5)] \times \frac{30}{60}
$$

$$
=6.35 \mathrm{~cm}
$$

$$
\therefore \quad W \text {-index }=\frac{23.35-6.35}{4}=4.25 \mathrm{~cm} / \text { hour }
$$

24. (d)

$$
\begin{aligned}
\mu & =P_{a v .}=\frac{800+520+440+420}{4}=545 \mathrm{~mm} \\
\Rightarrow \quad \sigma_{n-1}^{2} & =\frac{\Sigma\left(P_{i}-P_{a v}\right)^{2}}{n-1} \\
\Rightarrow \quad \sigma_{n-1}^{2} & =\frac{(800-545)^{2}+(520-545)^{2}+(440-545)^{2}+(420-545)^{2}}{4-1} \\
\Rightarrow \quad \sigma_{\mathrm{n}-1} & =175.404 \mathrm{~mm} \\
c_{v} & =\frac{\sigma_{n-1}}{\mu} \times 100=\frac{175.404}{545} \times 100=32.18 \%
\end{aligned}
$$

Now, No. of rainguages, $N=\left(\frac{c_{v}}{\varepsilon}\right)^{2}=\left(\frac{32.18}{10}\right)^{2}=10.355$
i.e. $\quad N=11$
\therefore Additional raingauge stations required $=11-4=7$
25. (b)

Muskingam routing equation:

Here

$$
Q_{2}=C_{0} I_{2}+C_{1} I_{1}+C_{2} Q_{1}
$$

$$
\begin{aligned}
& C_{0}=\frac{0.5 \Delta t-k x}{k-k x+0.5 \Delta t}=\frac{0.5 \times 6-10(0.25)}{10-10(0.25)+0.5(6)}=.0476 \\
& C_{1}=\frac{0.5 \Delta t+k x}{k-k x+0.5 \Delta t}=\frac{0.5(6)+10(0.25)}{10-10(0.25)+0.5(6)}=0.5238
\end{aligned}
$$

Since

$$
C_{0}+C_{1}+C_{2}=1
$$

$\Rightarrow \quad C_{2}=1-0.0476-0.5238$
$\Rightarrow \quad C_{2}=0.4286$
$\therefore \quad Q_{2}=0.0476 \times 25+0.5238 \times 10+0.4286 \times 10$
$\Rightarrow \quad Q_{2}=10.714 \mathrm{~m}^{3} / \mathrm{s}$
$\therefore \quad Q_{3}=0.0476 \times 50+0.5238 \times 25+0.4286 \times 10.714$

$$
=20.067 \mathrm{~m}^{3} / \mathrm{s} \simeq 20.07 \mathrm{~m}^{3} / \mathrm{s}
$$

26. (c)

$$
\begin{aligned}
f_{40} & =\int_{0}^{2 / 3} f(t) d t=\int_{0}^{2 / 3}\left(10+15 e^{-1.5 t}\right) d t \\
& =\left[10 t+15\left[\frac{e^{-1.5 t}}{-1.5}\right]\right]_{0}^{2 / 3}=10\left[\frac{2}{3}-0\right]-\frac{15}{1.5}\left[e^{-1.5 \times \frac{2}{3}}-e^{-1.5 \times 0}\right]
\end{aligned}
$$

$$
=\frac{20}{3}-10[0.368-1]=12.99 \mathrm{~mm}
$$

\therefore The average infiltration rate for the first 40 minutes will be

$$
f_{\mathrm{avg}}=\frac{12.99}{\left(\frac{2}{3}\right)}=19.485 \mathrm{~mm} / \mathrm{hr}
$$

27. (c)

For the $1^{\text {st }} 6 \mathrm{hr}$

$$
\text { Rainfall }=3 \mathrm{~cm}
$$

Effective rainfall $=3-0.325 \times 6=1.05 \mathrm{~cm}$
For the $2^{\text {nd }} 6 \mathrm{hr}$

$$
\text { Rainfall }=4 \mathrm{~cm}
$$

Effective rainfall $=4-0.325 \times 6=2.05 \mathrm{~cm}$

I	$I I$ Ordinate Time UH	III DRH due to first 6 hr storm	IV DRH due to second 6 hr storm	$I I I+I V$ Final DRH	$V I=V+10$ Final flood hydrograph
0	0	0	-	0	10
3	20	21	-	21	31
6	45	47.25	0	47.25	57.25
9	65	68.25	41	109.25	119.25
12	120	126	92.25	218.25	228.25
15	165	173.25	133.25	306.5	316.5

28. (b)

Basin diameter,

$$
D=15 \mathrm{~km}
$$

Side of square around station $A=\frac{15}{2}=7.5 \mathrm{~km}$

$$
\text { Area of station } A=7.5 \times 7.5=56.25 \mathrm{~km}^{2}
$$

Total area of circular basin $=\frac{\pi}{4}(15)^{2}=176.7 \mathrm{~km}^{2}$

Area of station $B=$ Area of station $C=$ Area of station $D=$ Area of station E

$$
\begin{aligned}
& =\left(\frac{176.7-56.25}{4}\right)=30.11 \mathrm{~km}^{2} \\
\therefore \quad \text { Mean rainfall } & =\frac{9 \times 56.25+30.11(7+10+11+8)}{176.7} \\
& =9 \mathrm{~cm}
\end{aligned}
$$

29. (a)

Storms	Duration (hr)	Intesnsity (cm/hr)	Total runoff depth (cm)
1	4	$\frac{3}{4}=0.75$	$3-4 \times 1=0$
2	4	$\frac{7}{4}=1.75$	$7-4 \times 1=3$
3	4	$\frac{11}{4}=2.75$	$11-4 \times 1=7$
4	6	$\frac{7}{6}=1.167$	$7-6 \times 1=1$
5	6	$\frac{8}{6}=1.33$	$8-6 \times 1=2$

Total runoff depth $=3+7+1+2=13 \mathrm{~cm}=0.13 \mathrm{~m}$
Total runoff volume $=0.13 \times 195 \times 10^{6} \mathrm{~m}^{3}$

$$
\begin{aligned}
& =0.13 \times 195 \mathrm{Mm}^{3} \\
& =25.35 \mathrm{Mm}^{3}
\end{aligned}
$$

30. (b)

$$
\begin{aligned}
\text { Average depth of rainfall } & =\frac{15 \times 30+\left(\frac{30+40}{2}\right) \times 250+\left(\frac{40+50}{2}\right) \times 150}{15+250+150+180+215+60} \\
& =\frac{450+8750+6750+7650+10212.5+3600}{870} \\
& =43 \mathrm{~mm}
\end{aligned}
$$

