
S.No. : 01 SK_CS_ABCD_240523

1. (a)

2. (c)

3. (d)

4. (c)

5. (c)

6. (d)

7. (d)

8. (d)

9. (d)

10. (c)

11. (d)

12. (c)

13. (a)

14. (a)

15. (a)

16. (d)

17. (d)

18. (b)

19. (b)

20. (b)

21. (d)

22. (d)

23. (d)

24. (b)

25. (c)

26. (c)

27. (d)

28. (b)

29. (a)

30. (a)

ANSWER KEY

COMPILER DESIGN

COMPUTER SCIENCE & IT

Date of Test : 24/05/2023

CLASS TEST

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

© Copyright :www.madeeasy.in

8 Computer Science & IT

DE TAILED EXPL ANATIONS

1. (a)
• S1 is correct.
• With triple, optimization cannot change the execution order but with indirect triple we can.

2. (c)
x is inherited.
y is synthesized.

3. (d)

4. (c)
Lexical analyzer → Syntax analyzer → Semantic analyzer → Intermediate code → Code optimizer.

5. (c)

S

X Y

id
6

id
4

+ YX * Y

id
5

id
7

X * Y

Output : 64 * 5 * 7 –

6. (d)
• Statement S1 and S2 are correct.
• Statement S3 is incorrect. Heap and stack both are present in main memory.

7. (d)
Lexemes are identified by the lexical analyzer as an instance of that token.
Hence only statement (d) is false.

8. (d)
• S → aabc | ab

There is left factoring in LL(1). Hence, not LL(1), but it is LL(2).
• Every regular language is LL(1) is true. There exist a regular grammar which is LL(1).
• Every regular grammar is LL(1) is false, because regular grammar may contain left recursion,

left factoring, ambiguity.

9. (d)
A Grammar G is said to be operator grammar if
(a) it does not contain null production.
(b) it does not contain 2 adjacent variable on right hand side.
So, both G1 and G2 are not operator grammar.

© Copyright : www.madeeasy.in

9• Compiler DesignCT-2023-24 CS

10. (c)
Follow (S) = {$, a, b}
Follow (A) = {a, b}

First (B) = {a, b}
First (S) = {a, b, ∈} = First (A) = First (B)

11. (d)
FOLLOW(S) = {a, b, c, e, $}

Total 5 elements are there.

12. (c)
Only option (c) is false since the GoTo part remains same.

13. (a)
LALR parser is more powerful thus option (b) is false.
CLR parser is more powerful than LALR so option (c) is also false.
Option (d) is also false with same reason which described above.

14. (a)
Compiler will remove all a’s and replace it with (x + 1) Thus, program would become like given
below:
#include <stdio.h>
int x = 2;
void b()
{

x = (x + 1);
printf(“%d\n”, x);

}
void c()

{
int x = 1;
printf(“%d\n”, (x + 1));

}
void main() {b(); c();}
Thus, output will be:
3
2

15. (a)
It’s constant folding.
Constant folding: Replacing the value of expression before compile time.
Here the value of 4 * 2.14 is replaced by 8.56. So it’s constant folding.

16. (d)
LL(1) grammar are free from left recursion, ambiguity left factoring.
So option (a), (b) and (c) are the pre requisite to be LL(1) grammar.

17. (d)
No grammar with empty production can be LR(0). But empty rules are allowed in regular grammar
as the only condition for a grammar to be regular is to be either left linear or right linear.

© Copyright :www.madeeasy.in

10 Computer Science & IT

18. (b)
LR(0) ⊂ LR(1) = LR(2) LR(k) = LR(k + 1); for k >= 1 : LR(k) = LR(k + 1) so, languages of
grammars parsed by LR(2) parsers is not a strict super set of the languages of grammars parsed
by LR(1) parsers although they both are same. If you compare their grammars then LR(0) ⊂ LR(1)
⊂ LR(2) LR(k) ⊂ LR(k + 1).

19. (b)
It is because we construct LALR parsing table by merging states of CLR(1) which are only separated
by look-aheads. In doing so we may merge states which may introduce R-R conflicts.

20. (b)
• Viable prefix is nothing but stack content in LR Parsing. In this question just check option if it

is visible in stack while doing parsing or not.
• A short trick to solve such question is to check, if there is already reduce handle in stack then

stack can’t store at any symbol after that reduce handle symbol.
Option (b) is only viable prefixes.

21. (d)
(a) Grammar is not ambiguous - true
(b) Priority of + is > than *, since + comes lower in parse tree - true.
(c) Right associativity – true.

22. (d)
Left recursion is there in the production Rule 2 and 3.
Rule 2 :

A → Abab
After removing left recursion :

A → bA′
A′ → baA′∈

Rule 3 :
B → BaAa

After removing left recursion :
B → aB′
B′ → aAB′∈

Hence, the grammar after resolving left recursion is,
S → ABBA
A → bA′
A′ → baA′∈
B → aB′
B′ → aAB′∈

© Copyright : www.madeeasy.in

11• Compiler DesignCT-2023-24 CS

23. (d)
LL (1) passing table :

S aSa S A→→ 

A aBb→

B aB→

S S bSb→

B bB B → ∈→ 

A

B

a b $

Since the production [S → aSa and S → A] are in the same tupple [S, a] of the parsing table. Hence
grammar isn’t LL (1).
Similarly, the productions [B → bB and B → ∈] are in the same tupple [B, b] of the parsing table.
LR (0) parsing table :

S S′ → .
S Sa→ a.

S Sb→ b.

A aBb→ .

B aB→ .

S aSa→ .
A a.Bb→

B b.B→

B .aB→

B .bB→

S bSb→ .
S aSa→ .

S aSa→ .

B bB→ .

S A→ .

S A.→

B bB.→

S → .bSb

S → .bSb

B → .∈

B → .∈

A aBb→ .
S A→ .

S A→ .

b

a

A

B
b

A
a

A
I4

I3

I0
S → b.Sb
S aSa→ .
S bSb→ .
S A→ .
A aBb→ .

I6

S S.′ →

I1

S b
I2

S Sa→ a.
A a.Bb→

S .A→

B .→ ∈

B a.B→
S → .aSa

B → .aB
A → .aBb

S bSb→ .

B bB→ .

S aS.a→

I7 a

B

I8
S

S aSa.→

A aB.b→
B aB.→

I9

I5

I10

a

S
S

This grammar is not LR (0) as well because there is shift reduce conflict is canonical item I10.
Note : LL(1) and LR(0) grammar can’t contain null production.

24. (b)
• A token is a pair consisting of a token name and an optional attribute value. The token name

is an abstract symbol representing a kind of lexical unit e.g. a particular keyword or a sequence
of input characters denoting an identifier.

• A pattern is a description of the form that the lexemes of a token may take. In the case of a
keyword as a token, the pattern is just the sequence of characters that form the keyword.

• A lexeme is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token.

© Copyright :www.madeeasy.in

12 Computer Science & IT

25. (c)
Intermediate states of SLR (1) parser :

S S′ → .
S ABA→ .

A → ∈.

A Bc→ .

A e→ .

A → .dA

B → .ed
B → .e

S
A

B

d

A e.→

B e.d→
B e.→

A B.c→

S A.BA→

S S.′ →

A d.A→

B → .ed
A → .e

A Bc→ .
A dA→ .

B e→ .

A → ∈.

I4

I3

I2

I1

I0

I5
e

B → .ed
B → .e

Considering the state I5, it can be said that an intermediate state has both shift reduce as will as
reduce-reduce conflict
I5 : A → e., B → e., B → e.d
[I5, d] - shift entry for B → e.d
[I5, e, d, $] - reduce entry for B → e.
[I5, e, $] - reduce entry for A → e.

26. (c)
Consider each statement :
S1 : Consider the grammar S → Py P, P → g. This grammar is both left as well as right recursive

but it’s not ambiguous.
S2 : Every regular set can be converted to right linear grammar. All right linear grammar are LL

(1). A grammar which is LL (1) will also be LR (1).
S3 : Intermediate codes are generated by the compiler to enhance the portability of the front end

of the compiler.
S4 : Left recursive grammars can not be used by Recursive Descent Parsers.

27. (d)
Constructing CLR (1) parser :

S Ab, $→ a.
A aB, b→ .
A aA, b→ .

A b

A

a

a

S $′ → .S,
S $→ .aAb,

S S S., $′ →

S aA.b, $→ S aAb., $→

A aA., b→

A → a.B, b

A → aB, b.

B → .Bb, b

A b→ .A, a

A b→ .aA,

bA aB., b→
B B.b, b→

B Bb., b→

B

I0 I1

I2 I3

I4

I5 I6

I7

I8

In canonical item, I5, the production A → aB. Will have its parsing table entry at [I5, b]. Similarly,
for production, B → B.b, the entry will be at [I5, b], which shows a shift-reduce conflict.
Hence grammar is not CLR (1).

© Copyright : www.madeeasy.in

13• Compiler DesignCT-2023-24 CS

28. (b)
The code is as follows,

t1 = a + b
t2 = – c
t2 = t2 + d = [– c + d]
t1 = t1 ∗ t2 = [a + b] ∗ [– c + d]
t1 = t1 + e = ([a + b] ∗ [– c + d]) + e
S = t1
S = [(a + b) ∗ (– c + d)] + e

29. (a)
Given SDT is S-attributed and hence L-attributed too. Since all translations are appended at end
and attributes are synthesis, hence both L-attributed and S-attributed approach evaluates to same
value.

S {S.val = 17}

S P+

P P ∗ Q

Q Q num

2 3

num num 5

{S.val = 2}

{P.val = 2} {P.val = 3}

{Q.val = 2} {Q.val = 3}

{P.val = 15}

{Q.val = 5}

30. (a)
Construction a LALR (1) parser :

S S; $′ → .
S id; $, ×, +→ .
S S × S; → . $, ×, +
S → .S – S; $, ×, +

S

S ′ → id.; $, ×, +

S → S. × S; $, ×, +
S′ → S. ;$

S → S. – S; $, ×, +

S → S × .S; $, ×, +
S → S × S ; . $, ×, +

S → S + .S; $, ×, +
S → S + S ; . $, ×, +

S → .S × S; $, ×, + S → S × S; . $, ×, +

S → .S × S; $, ×, + S → S × S; . $, ×, +

S → .id; $, ×, +

S → .id; $, ×, +

S → .S + S; $, ×, + S → S + S; . $, ×, +

S → .S + S; $, ×, + S → S + S; . $, ×, +

I0

× S

S

+

id

×

+

+

×

id

id

I1
I2 I3

I4 I5

I6

As per the DFA, it can be observed that states I3 and I5 have shift reduce conflicts. Since, they are
fed to YACC, hence it will be resolved in the favor of shift.
So, it can be concluded that both ‘×’ and ‘+’ have same precedence are right associative since we
are reducing in spite of shifting.
Expression : 5 × 2 × 4 + 6

⇒ 5 × 2 × 10
⇒ 5 × 20
⇒ 100

© Copyright :www.madeeasy.in

14 Computer Science & IT

Annotated Parse Tree :
S {S.val = 100}

× SS

5

id

{S.val = 20}{S.val = 5}

×
S {S.val = 10}{S.val = 2}

+
S {S.val = 6}

6

id

{S.val = 4}

S

2

id S

4

id

Hence, the expression evaluates to 100.

