HIGHWAY ENGINEERING

CIVIL ENGINEERING

Date of Test : 19/05/2023

ANSWER KEY

1. (d)
2. (b)
3. (c)
4. (a)
5. (b)
6. (c)
7. (b)
8. (d)
9. (c)
10. (b)
11. (b)
12. (c)
13. (c)
14. (a)
15. (c)
16. (b)
17. (c)
18. (b)
19. (b)
20. (a)
21. (c)
22. (d)
23. (d)
24. (b)
25. (a)
26. (b)
27. (a)
28. (b)
29. (a)
30. (a)

DETAILED EXPLANATIONS

1. (d)

As per IRC, coefficient of longitudinal friction $=0.35$ to 0.4 .
Coefficient of lateral friction is useful in horizontal curve design.
2. (c)

The Nagpur road plane laid down two formulae for road length of different classes, considering the geographical, agricultural and population conditions, assumed the star and grid pattern of the road network.

An example of radial and circular pattern is the road network of Connaught Place in New Delhi.
3. (b)

Deviation angle, $\quad N=\left|\frac{1}{75}-\left(-\frac{1}{50}\right)\right|=0.0333$
Assuming,

$$
\begin{align*}
& L>S \\
& \begin{aligned}
L & =\frac{N S^{2}}{9.6}=\frac{0.0333 \times 400^{2}}{9.6} \\
& =555.56>S(=400 \mathrm{~m})
\end{aligned}
\end{align*}
$$

4. (b)
5. (c)

Summit curve: Summit curves are vertical curves with convexity upward, the design of a summit curve is governed by consideration of sight distance.
6. (b)

A metal hammer of weight $13.5-14.0 \mathrm{~kg}$ having a free fall from a height 38 cm is dropped 15 times in aggregate impact test.

So energy imparted $=14 \times 38 \times 15=7980 \mathrm{~kg}-\mathrm{cm}$
7. (b)

Marshall test is used for design of bituminous concrete mix i.e., option (b) is correct.
8. (b)

Rigid pavements are more affected by temperature variation than flexible pavements.
9. (c)

As per IRC, minimum length of transition curve in plain or rolling terrain

$$
L_{s}=\frac{2.7 V^{2}}{R}=\frac{2.7 \times 100^{2}}{180}=150 \mathrm{~m}
$$

10. (c)

The spacing of expansion joint is given by

$$
\begin{array}{ll}
& L_{e}=\frac{\delta^{\prime}}{100 C\left(T_{2}-T_{1}\right)} \\
\text { Given, } \quad \delta^{\prime} & =\frac{\text { Width of expansion joint }}{2}=\frac{2}{2}=1 \mathrm{~cm} \\
\therefore \quad & L_{e}
\end{array}
$$

11. (d)

$$
V=80-\frac{2}{3} K
$$

Capacity,

$$
\begin{aligned}
q & =V \times K \\
& =80 K-\frac{2}{3} K^{2}
\end{aligned}
$$

For q to be maximum, $\frac{d q}{d K}=0$

$$
\begin{array}{rlrl}
& & =80-\frac{4 K}{3}=0 \\
\therefore & K & =60 \\
\therefore \text { Maximum capacity, } \quad q & =80 \times 60-\frac{2}{3} \times 60^{2} \\
& & =4800-\frac{2}{3} \times 3600=2400 \mathrm{veh} / \mathrm{hr}
\end{array}
$$

12. (a)

$$
\begin{aligned}
& \text { Off-tracking, } \quad \frac{l^{2}}{2 R}=0.1 \mathrm{~m} \\
& \Rightarrow \quad R=\frac{(6.6)^{2}}{2 \times 0.1}=217.8 \mathrm{~m} \\
& \text { Extra-widening, } \quad E_{W}=\frac{n l^{2}}{2 R}+\frac{V}{9.5 \sqrt{R}} \\
& =2 \times 0.1+\frac{75}{9.5 \sqrt{217.8}} \\
& =0.2+0.53=0.73 \mathrm{~m}
\end{aligned}
$$

13. (c)

Road	Length (km)	Total utility served by the road	Utility per unit length	Priority
P	500	$100 \times 1+70 \times 2+50 \times 4+20$ $\times 8+50 \times 2+20 \times 10=900$	$\frac{900}{500}=1.8$	II
Q	600	$200 \times 1+120 \times 2+30 \times 4+10$ $\times 8+60 \times 2+25 \times 10=1010$	$\frac{1010}{600}=1.683$	III
R	800	$100 \times 1+90 \times 2+80 \times 4+80$ $\times 8+30 \times 2+15 \times 10=1450$	$\frac{1450}{800}=1.8125$	I
S	900	$150 \times 1+130 \times 2+100 \times 4+10$ $\times 8+50 \times 2+12 \times 10=1110$	$\frac{1110}{900}=1.23$	IV

14. (d)

Population, agriculture and industrial development factors are utilized in deciding the best alignment.
15. (c)

Development allowance in first 20 years road plan $=15 \%$ of road length
Development allowance in second 20 years road plan $=5 \%$ of road length
16. (b)

Since the carriageway is divided i.e., dual carriageway.
Maximum of both direction traffic will be taken i.e.,

$$
\begin{aligned}
\mathrm{A} & =2400 \mathrm{cvpd} \\
\mathrm{~N}_{\mathrm{s}} & =\frac{365 A D F\left\{(1+r)^{n}-1\right\}}{r \times 10^{6}} \times L S F \\
& =\frac{365 \times 2400 \times 0.6 \times 3.0\left\{(1+0.07)^{15}-1\right\}}{0.07 \times 10^{6}} \\
& =39.62 \mathrm{msa}
\end{aligned}
$$

17. (d)

Time	Volume	HEF	Volume \times HEF
8:00-9:00	500	14.5	7250
9:00-10:00	350	17.6	6160
10:00-11:00	200	15.3	3060
11:00-12:00	150	18.1	2715
			$\Sigma x=19185$

Average daily traffic $=\frac{\Sigma x}{4}=\frac{19185}{4}=4796.25$
Weekly average daily traffic $=\frac{4796.25 \times D E F}{7}=\frac{4796.25 \times 5.7}{7}=3905.52$
Annual average daily traffic, \quad AADT $=3905.52 \times 1.35=5272.45$
18. (b)

$$
\lambda=280 \mathrm{veh} / \mathrm{hr}
$$

Probability for 10 vehicles arriving within 2 minutes time interval

$$
\begin{aligned}
P(n, t) & =\frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
P\left(10, \frac{2}{60}\right) & =\frac{\left(280 \times \frac{2}{60}\right)^{10} e^{-280 \times \frac{2}{60}}}{10!} \\
& =\frac{5.016 \times 10^{9} \times 8.84 \times 10^{-5}}{10!} \\
& =0.122
\end{aligned}
$$

19. (a)

Let time after which uniform arrival and discharge line meets is at tec after the red time.
$\therefore \quad 4+24 \times \frac{(20+t)}{60}=42 \times \frac{t}{60}$
$\Rightarrow \quad 4 \times 60+24 \times 20+24 t=42 t$
$\Rightarrow \quad \mathrm{t}=40 \mathrm{sec}$
Hence, both lines meet exactly at the end of cycle time
Total vehicle discharge at the end of cycle time

$$
=42 \times \frac{40}{60}=28
$$

Average delay per vehicle $=\frac{\text { Area between } A R \text { and } D R}{\text { Cumulative vehicle at the end of cycle }}$

$$
\begin{aligned}
& =\frac{\frac{1}{2}[4+28] \times 60-\frac{1}{2} \times 40 \times 28}{28} \\
& =\frac{400}{28}=14.28 \mathrm{sec}
\end{aligned}
$$

20. (c)

If α is the rate of change of radial acceleration, the radial acceleration (a) attained during the time the vehicle passes over the transition curve is given by

$$
\begin{aligned}
a & =\alpha t=\alpha \times \frac{L}{V} \\
\text { Radial acceleration, } \quad a & =\frac{V^{2}}{R}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \alpha \times \frac{L}{V} & =\frac{V^{2}}{R} \\
\Rightarrow & L & =\frac{V^{3}}{\alpha R} \\
\Rightarrow & L & =\frac{\left(\frac{45 \times 1000}{60 \times 60}\right)^{3}}{0.25 \times 240} \\
& & =32.55 \mathrm{~m}
\end{aligned}
$$

21. (a)

$$
\begin{aligned}
\text { Effective green time } & =\text { Green time }+ \text { Amber time }- \text { Startup loss }- \text { Clearance time } \\
& =27+3.5-2.5-1.5=26.5 \text { second } \\
\text { Saturation flow } & =\frac{3600}{\text { Saturation time headway }} \\
& =\frac{3600}{2.5}=1440 \text { veh } / \mathrm{hr}
\end{aligned}
$$

$$
\text { Actual capacity }=\text { Saturation flow } \times \frac{\text { Effective green time }}{\text { Cycle time }}
$$

$$
=1440 \times \frac{26.5}{60}=636 \mathrm{veh} / \mathrm{hr}
$$

22. (b)

The cumulative number of standard axle load,

$$
\begin{aligned}
N_{S} & =\frac{365 A D F\left[\left(1+\frac{r}{100}\right)^{n}-1\right]}{\frac{r}{100}} \\
\Rightarrow \quad N_{S} & =\frac{365 \times 1250 \times 0.5 \times 3\left[\left(1+\frac{8}{100}\right)^{10}-1\right]}{\frac{8}{100}} \\
& =9.91 \mathrm{msa}
\end{aligned}
$$

23. (b)
24. (a)

Spacing between contraction joint is given by

$$
L_{C}=\frac{2 S_{c}}{w f} \times 10^{4}=\frac{2 \times 0.8 \times 10^{4}}{2400 \times 1.5}=4.44 \mathrm{~m}
$$

25. (b)

As per IRC total number of volume of about 3000 veh/hr can be considered as the upper limiting case and a volume of $500 \mathrm{veh} / \mathrm{hr}$ is the lower limit.
26. (b)

$$
\begin{aligned}
& y_{N}=\frac{q_{N}}{S_{n}}=\frac{900}{2500}=0.36 \\
& y_{S}=\frac{q_{S}}{S_{S}}=\frac{500}{2000}=0.25
\end{aligned}
$$

$\therefore \quad$ Maximum value of $\frac{q}{S}$ in N-S direction $=0.36$

$$
\begin{aligned}
& y_{E}=\frac{q_{E}}{S_{E}}=\frac{800}{3200}=0.25 \\
& y_{W}=\frac{q_{W}}{S_{W}}=\frac{1000}{3000}=0.33
\end{aligned}
$$

\therefore Max value of $\frac{q}{S}$ in $\mathrm{E}-\mathrm{V}$ direction $=0.33$.
Total lost time $=4 \times 2=8 \mathrm{sec}$

$$
C_{0}=\frac{1.5 L+5}{1-Y}=\frac{1.5 \times 8+5}{1-(0.36+0.33)}=54.84 \mathrm{sec}
$$

27. (c)

Given: $P=4100 \mathrm{~kg}, E=3 \times 10^{5} \mathrm{~kg} / \mathrm{cm}^{2}, h=15 \mathrm{~cm}, k=3 \mathrm{~kg} / \mathrm{cm}^{2}, a=15 \mathrm{~cm}, \mu=0.15$
Equivalent radius of resisting section:

$$
\begin{aligned}
b & =\sqrt{1.6 a^{2}+h^{2}}-0.675 h \quad[a<1.724 h=1.724 \times 15=25.86 \mathrm{~cm}] \\
& =\sqrt{1.6(15)^{2}+(15)^{2}}-0.675 \times 15=14.06 \mathrm{~cm}
\end{aligned}
$$

28. (a)

Radius of relative stiffness, $l=\left[\frac{E h^{3}}{12 K\left(1-\mu^{2}\right)}\right]^{1 / 4}$

$$
\begin{array}{ll}
\Rightarrow & l=\left[\frac{2.8 \times 10^{5} \times 30^{3}}{12 \times 8 \times\left(1-0.15^{2}\right)}\right]^{1 / 4} \\
\Rightarrow \quad l=94.74 \mathrm{~cm}
\end{array}
$$

Warping stress at corner is given by

$$
\begin{aligned}
S_{t c} & =\frac{E \alpha T}{3(1-\mu)} \sqrt{\frac{a}{l}} \\
P & =\pi a^{2} p \\
\Rightarrow \quad 4000 & =\pi a^{2} \times 5 \\
\Rightarrow \quad a & =15.96 \mathrm{~cm} \\
S_{t c} & =\frac{2.8 \times 10^{5} \times 10 \times 10^{-6} \times 12}{3(1-0.15)} \sqrt{\frac{15.96}{94.74}} \\
& =5.41 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

29. (a)

Condition for the prevention of overturning and sliding is

$$
\begin{array}{rlrl}
& \begin{aligned}
\frac{V^{2}}{g R} & <\min \left\{\begin{array}{l}
\frac{b}{2 h} \\
f
\end{array}\right. \\
\frac{\frac{b}{2 h}}{} & =\frac{0.8}{2 \times 0.6}=0.67 \\
& f
\end{aligned} & =\frac{F}{N}=\frac{5}{40}=0.125 \\
\text { So, } & \frac{V^{2}}{g R} & =0.125 \\
\Rightarrow & & V^{2} & =0.125 \times 250 \times 9.81 \\
\Rightarrow & V^{2} & =306.5625 \\
\Rightarrow & V & =17.51 \mathrm{~m} / \mathrm{s} \\
\Rightarrow & V & =63.04 \mathrm{kmph}
\end{array}
$$

30. (a)

$$
\begin{equation*}
\frac{\log (E S W L)-\log (P)}{\log (2 P)-\log (E S W L)}=\frac{\log Z-\log \frac{d}{2}}{\log 2 S-\log Z} \tag{i}
\end{equation*}
$$

Here,

$$
\begin{aligned}
\mathrm{ESWL} & =62 \mathrm{kN} \\
P & =35 \mathrm{kN} \\
Z & =30 \mathrm{~cm} \\
S & =20 \mathrm{~cm} \\
d & =?
\end{aligned}
$$

Substitute all the values in eq. (i)

$$
\begin{aligned}
\frac{\log 62-\log 35}{\log 70-\log 62} & =\frac{\log 30-\log \frac{d}{2}}{\log 40-\log 30} \\
\Rightarrow \quad d & =15.47 \mathrm{~cm}
\end{aligned}
$$

