CLASS TEST SL.: 04 SP_ME_E+F_150								052023	
ERSS MADE EASS India's Best Institute for IES, GATE & PSUs									
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
	CA	AS	TING	G +	⊦ WE		DING	Ĵ	
MECHANICAL ENGINEERING									
			Date of Test: 15/05/2023						
AN	SWER KEY	>							
1.	(c)	7.	(a)	13.	(b)	19.	(b)	25.	(c)
2.	(a)	8.	(c)	14.	(b)	20.	(d)	26.	(b)
3.	(b)	9.	(c)	15.	(d)	21.	(c)	27.	(a)
4.	(c)	10.	(d)	16.	(c)	22.	(c)	28.	(c)
5.	(b)	11.	(a)	17.	(a)	23.	(c)	29.	(b)
6.	(b)	12.	(d)	18.	(a)	24.	(c)	30.	(a)

DETAILED EXPLANATIONS

1. (c)

It also ensures direction solidification, but it's a secondary purpose.

2. (a)

Using modulus method

$$M_R = 1.2M_C$$

For optimum side riser, d = h

...

$$M_{C} = \frac{\text{Volume}}{\text{Surface Area}} = \frac{30 \times 30 \times 6}{2(30 \times 30 + 30 \times 6 \times 2)}$$

= 2.143 cm
$$\frac{D}{6} = 1.2 \times 2.143$$

$$D = 6 \times 1.2 \times 2.143$$

= 15.43 cm

3. (b)

A - 3, B - 1, C - 4, D - 2.

5. (b)

On increasing currents, heat generated will increase and reducing speed will given more time to heat to accumulate hence increasing weld penetration.

6. (b)

7. (a)

Volume of weld is $= \frac{\pi}{4}d^2l$ d = wire diameter L = wire feed rate $V = \frac{\pi}{4} \times 1.4^2 \times 3.5 \times 1000 = 5387.83 \text{ mm}^3/\text{min}$ Area of weld $= \frac{5387.83}{\text{welding speed}} = \frac{5387.83}{160}$ $= 33.673 \text{ mm}^2$

8. (c)

We know that carbon equivalent is

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$

More the carbon equivalent, lesser is the weldabiltity of steel.

13. (b)

Number of chaplets required beneath to resist weight of core before pouring.

$$W_C = 800 \times 10^{-6} \times 1500 \times 10 = 12 \text{ N}$$

: Atleast 2 chaplets are required, because, each chaplet can withstand a load of 8 N.

Buoyancy force =
$$V_{core} (\rho_m - \rho_c)$$

= 800 × 10⁻⁶ (6000 - 1500) × 10
= 36

So, no of chaplets required are:

$$\frac{36}{8} = 4.5$$

Atleast 5 chaplets are required to resist buoyancy force.

14. (b)

Heat for melting, $H_m = UV$

$$V = \frac{\pi}{4} d^2 t = \frac{\pi}{4} (5)^2 \times 2.5 = 49.087 \,\mathrm{mm}^3$$

Heat supplied, $H_s = 4H_m = 4 \times 9 \times 49.087 = 1767.132 \text{ J}$

$$H_{s} = \int_{0}^{t} I^{2}Rdt = (10^{5})^{2} \times 100 \times 10^{-6} \int_{0}^{t} t^{2}dt = \frac{10^{6}t^{3}}{3}$$

$$t = \left(\frac{3 \times 1767.132}{10^6}\right)^{1/3} = 0.174$$
 seconds

15. (d)

Non consumable electrode is used in TIG welding and it is used for welding of AI and Mg alloys in aerospace industries.

16. (c)

Heat supplied = $30000^2 \times 10 \times 10^{-6} \times 0.05 = 450 \text{ J}$

Volume of joint = $\frac{\pi \times 5^2 \times 1.5}{4} \simeq 29.452 \text{ mm}^3$

: Heat required for melting is = $29.452 \times 10 = 294.52$

: Heat loss to surround is 450 - 294.52 = 155.48 J

17. (a)

For maximum power, voltage $|_{generator} = \frac{\text{open circuit voltage}}{2}$ and $\text{current}|_{generator} = \frac{\text{short circuit current}}{2}$

18. (a)

As neutral flame uses equal amounts of oxygen and acetylene in burning so both cylinders of equal capacity will be emptied together.

19. (b)

For given problem,

Filling time for top gating system = t_{f1}

Since, Height of gating system= Height of mould

:. Filling time for bottom gating system = 2 (Filling time for top gating system)

$$\frac{t_{f2}}{t_{f1}} = 2$$

20. (d)

In casting, gating ratio is defined as the ratio of sprue area : runner area : gate area. Therefore, sequence is (iii - i - ii).

21. (c)

Choke area =
$$\frac{m}{\rho \cdot t_s \cdot C_d \cdot \sqrt{2gh_t}} = \frac{\text{Volume}}{t_s \cdot c_d \cdot \sqrt{2gh_t}}$$

= $\frac{10000}{6 \times 0.9 \times \sqrt{2 \times 1000 \times 500}} = \frac{10000}{6 \times 0.9 \times 1000} = \frac{100}{54} = 1.85 \text{ cm}^2$

22. (c)

- Heat required to melt unit volume is a material property and it will remain same.
- Heat supplied by the source depends on weld speed.
- 23. (c)

Given: L = 1000 mm, d = 750 mm, k = 2 s/mm²,

Solidification time (t) =
$$k \left(\frac{V}{A}\right)^2$$

$$\left(\frac{V}{A}\right)_{\text{cylinder}} = \frac{\frac{\pi}{4}D^2L}{2\times\frac{\pi}{4}D^2 + \pi DL} = \frac{D^2L}{2D^2 + 4DL} = \frac{(750)^2 \times 1000}{2(750)^2 + 4\times 750 \times 1000} = 136.36$$
$$t = \frac{2\times 136.36^2}{60}$$
$$= 619.83 \text{ minutes}$$

24. (c)

Given: V = 20 + 40L

Power source characteristic equation can be written as,

$$\frac{V}{V_0} + \frac{I}{I_s} = 1$$

$$\Rightarrow \frac{V}{80} + \frac{I}{1000} = 1$$

$$I = 1000 \left(1 - \frac{V}{80}\right) = 1000 - 12.5V$$

$$= 1000 - 12.5(20 + 40L)$$

$$= 1000 - 250 - 500L$$

$$= 750 - 500L$$
Power, $P = VI$

$$= (20 + 40L)(750 - 500L)$$

$$= 20(1 + 2L) \times 250(3 - 2L)$$

$$P = 5000(1 + 2L)(3 - 2L) W$$

26. (b)

In casting operation, solidification shrinkage is contraction during phase change from liquid to solid. Solidification shrinkage is compensated by providing riser to the casting.

27. (a)

Energy required for the weld operation = Specific energy × Area of weld bead

$$= 19 \text{ J/mm}^3 \times 20 \text{ mm}^2$$

$$= 380 \text{ J/mm}$$
Energy supplied
$$= VI$$

$$= 120 \times 30$$

$$= 3600 \text{ J/s}$$

$$\eta_{\text{th}} = \frac{\text{Energy required}}{\text{Energy supplied}}$$

$$0.70 = \frac{380 \times V}{3600}$$

$$\Rightarrow \text{ Weld speed} = 6.6315 \text{ mm/s}$$

28. (c)

$$Z = \frac{L+W}{t}$$

Z = Shape factor, L = Length, W = Width, t = Thickness

$$Z = \frac{35+20}{10} = 5.5$$

 $\frac{\text{Riser volume}}{\text{Casting volume}} = 0.35$ $\frac{\frac{\pi d^2}{4} \times h}{35 \times 20 \times 10} = 0.35$ $\frac{\pi d^3}{4} = 0.35 \times 35 \times 20 \times 10$ d = 14.61 cm

29. (b)

 $\begin{array}{rl} h &=& 20 \ {\rm cm} \\ A_{\rm base} &=& 2.5 \ {\rm cm}^2 \\ {\rm Volume} &=& 1560 \ {\rm cm}^3 \end{array}$ The velocity of the molten metal at the base, $\begin{array}{rl} v &=& \sqrt{2 \times 981 \times 20} = 198.1 \ {\rm cm/s} \\ {\rm Volumetric flow rate, } Q &=& A_{\rm base} \times v \\ &=& 2.5 \times 198.1 = 495.227 \ {\rm cm}^3/{\rm s} \end{array}$ Time required to fill a mold cavity, $\begin{array}{rl} {\rm Volume} \end{array}$

t

$$= \frac{\text{Volume}}{Q} \\ = \frac{1560}{495.227} = 3.15 \text{ sec}$$