

Q. No. 1 to Q. No. 10 carry 1 mark each

Q.1 The number of ways of arranging the letters GGGGGAAATTTECCS in a row when no two T's are together is

(a)
$$\frac{12!}{5!3!2!} \times {}^{13}P_3$$
 (b) $\frac{12!}{5!3!2!} \times \frac{{}^{13}P_3}{3!}$

(c)
$$\frac{15!}{5!3!2!} - \frac{13!}{5!3!2!}$$
 (d) $\frac{15!}{5!3!3!2!} - 3$

- **Q.2** Let *G* be a planar graph such that every face is bordered by exactly 3 edges. Which of the following can never be the value for $\chi(G)$? [Where $\chi(G)$ is chromatic number of *G*]
 - (a) 2 (b) 3
 - (c) 4 (d) None of these
- Q.3 The proposition

$$[(p \land q) \rightarrow (p \lor q)] \lor \sim p \lor q$$
 is

- (a) A tautology
- (b) Satisfiable but not tautology
- (c) A contradiction
- (d) None of the above
- Q.4 Consider the following lattice:

Find the number of complements for the element 'a'

- (a) 1 (b) 3 (c) 5 (d) 7
- **Q.5** Consider a relation $R = \{(x, y) | x, y \text{ are positive integers } \le 4 \text{ and } (x + y) \le 5\}$. Which of the following is true?
 - (a) *R* is reflexive, symmetric and transitive
 - (b) *R* is symmetric and transitive

- (c) *R* is antisymmetric and transitive(d) *R* is symmetric
- **Q.6** How many solutions are there of x + y + z = 17 in positive integers?
 - (a) 120 (b) 171
 - (c) 180 (d) 221
- Q.7 Identify the contrapositive for the following statement. "If a real number is greater than 2, then its square is greater than 4."
 - (a) $\forall x \in R$, if $x^2 > 4$ then x < 2
 - (b) $\forall x \in R$, if $x^2 \le 4$ then $x \le 2$
 - (c) $\forall x \in R$, if $x \le 2$ then $x^2 \le 4$
 - (d) None of these

Q.8 Find the number of perfect matchings in a cycle graph with 2*n* vertices is _____.(a) 0 (b) 2

(c)
$$n$$
 (d) $\frac{n}{2}$

Q.9 Let $X = \{\{\}, \{a\}\}$. The power set of X is

- (a) {{ }, {a}} (b) {{ }, {a}, {{ }}, {a}}
- (c) {{ }, {{a}}, {{ }, a}}
- (d) {{ }, {{a}}, {{ }, {{a}}}}
- **Q.10** A set of *mn* objects can be partitioned into '*m*' sets of size '*n*' in _____ different ways.

(a)
$$\frac{m!}{(n!)^m}$$
 (b) $\frac{(mn)!}{(n!)^m m!}$
(c) $\frac{(mn)!}{(n!)^m}$ (d) None of these

Q. No. 11 to Q. No. 30 carry 2 marks each

Q.11 Consider the following predicate statements:

$$P_1: \neg \forall x \neg (P(x) \rightarrow \exists y \ Q(y))$$

$$P_2: \exists x (\neg P(x) \lor \exists y \ Q(y))$$

 $P_3: \exists x \big(\neg \exists y Q(y) \rightarrow \neg P(x) \big)$

 $P_4: \neg \forall x (P(x) \land \neg \exists y Q(y))$

Which of the above predicates are equivalent to the predicate statement: $\exists x (P(x) \rightarrow \exists y \ Q(y))$

Discrete Mathematics

3

- (a) P_1, P_2, P_3 (b) P_1, P_3, P_2 (c) P_2, P_3, P_4 (d) All of these
- **Q.12** Which one of the first order predicate calculus statements given below correctly expresses the following English statement? (Domain consists of all people; F(x) : x is a female, M(x, y) : x is mother of y, P(x) : x is a parent).

"If a person is female and is a parent, then this person is someone's mother"

- (a) $\exists x ((F(x) \land P(x)) \rightarrow \forall y M(x, y))$
- (b) $\forall x \exists y ((F(x) \land P(x)) \rightarrow M(x, y))$
- (c) $\forall x ((F(x) \lor P(x)) \to \exists y M(x, y))$
- (d) $\forall x \exists y ((F(x) \lor P(x)) \to M(x, y))$
- Q.13 Consider the following graphs:

Identify the correct statement?

- (a) Only G_1 is Hamiltonian.
- (b) Only G_2 is Hamiltonian.
- (c) Both G_1 and G_2 are Hamiltonian.
- (d) Neither G_1 nor G_2 is Hamiltonian.

Linked Answer Q.14 and Q.15:

Let *G* be a graph with $V(G) = \{i \mid 1 \le i \le 4n, n \ge 1\}$ where V(G) is the set of vertices of *G*. Such that two numbers *x* and *y* in V(G) are adjacent if and only if (x + y) is a multiple of 4.

- **Q.14** Find the number of components in graph G.
 - (a) 2 (b) 4
 - (c) *n* (d) None of these

- **Q.15** From the above *k* components, assume that each component C_k has m_k vertices, then what is the maximum value of m_k in the graph *G*?
 - (a) *n*(b) 2*n*(c) 3*n*(d) None of these
- **Q.16** Assume that connected simple graph '*G*' has *n* vertices ($n \ge 3$) and *e* edges. Which of the
- *n* vertices ($n \ge 3$) and *e* edges. Which of the following statement is invalid?
 - (a) If *G* is planar then $e \leq (3n 6)$.
 - (b) If $e \le (3n 6)$ then *G* is a planar.
 - (c) If e > (3n 6) then *G* is not planar.
 - (d) If *G* is not planar then e > (3n 6).
- Q.17 Solve the following recurrence relation.

$$T(n) = 3T(n - 1) + 2^{n}, n > 0 \text{ and } T(0) = 1$$

(a) $3^{n+1} - 2^{n+1}$ (b) $3^{n} - 2^{n}$
(c) $3^{n+1} - 2^{n}$ (d) $3^{n+1} + 2^{n}$

Q.18 Find the predicate logic for the following statement.

There are atmost two apples.

- (a) $\forall x \forall y ((Apple (x) \land Apple (y)) \rightarrow (x = y \land y = x))$
- (b) $\exists x \exists y \text{ (Apple } (x) \land \text{Apple } (y) \land x \neq y \land \forall z \text{ (Apple } (z) \rightarrow (z = x \lor z = y)))$
- (c) $\forall x \forall y \forall z ((Apple (x) \land Apple (y) \land Apple (z)) \rightarrow (x = y \lor x \lor y = z))$
- (d) None of these
- Q.19 Consider the following statements:

Let *G* be a connected graph of order *n* where $n \ge 3$.

 S_1 : If $d(V) \ge \frac{n}{2}$ for each vertex V in G, then

G is Hamiltonian. [d(V) is the degree of a vertex *V*]

 S_2 : If every vertex in *G* has even degree then *G* is eulerian.

Which of the above statements are correct?

- (a) Only S₁(b) Only S₂
- (c) Both S_1 and S_2
- (d) Neither S_1 nor S_2

- **Q.20** Which of the following is/are tautology? (a) $(p \rightarrow q) \rightarrow (q \rightarrow p)$
 - (b) $\sim (p \rightarrow q) \rightarrow \sim q$
 - (c) $(p \to q) \leftrightarrow (\sim q \to \sim p)$
 - (d) Both (b) and (c)
- **Q.21** Which of the following is a function from *R* to *R*? (Where *R* is the set of real numbers)

(a)
$$f(x) = \frac{1}{x}$$
 (b) $f(x) = \sqrt{x}$
(c) $f(x) = \sqrt{x^2 + 1}$ (d) $f(x) = |x|$

Q.22 Consider the following statements:

 S_1 : Bipartite graph cannot have an odd length cycle

 S_2 : Any graph with only even cycles is bipartite graph

- (a) Only S_1 is true.
- (b) Only S_2 is true.
- (c) S_1 and S_2 both are true.
- (d) None of these
- **Q.23** The function f(x, y) = x + y from $R \times R \rightarrow R$ is
 - (a) Injective and subjective
 - (b) Injective but not subjective
 - (c) Subjective but not injective
 - (d) Neither injective nor subjective
- Q.24 Which of the following is false?
 - (a) The degree sequence of every simple graph must have at least one repetition of degree.
 - (b) A graph which is bipartite cannot contain any triangle.
 - (c) The number of vertices of even degree in any undirected graph is necessarily odd.
 - (d) For any graph either *G* or \overline{G} is always connected.
- **Q.25** How many 6 letter passwords of lower case English letters contain exactly 1 vowel.
 - (a) $6 \times 5 \times 21^5$ (b) $5C_1 \times 21C_5 \times 6!$
 - (c) $26^6 21^6$ (d) None of these

Q.26 Consider a domain $s = \{1, 2, 3, 4\}$ $P(x, y): x * y \ge 2$ Which of the following is true?

Which of the following is true?

1.	$\forall x \; \forall y \; P(x, y)$	2.	$\forall x \exists y \ P(x, y)$
3.	$\exists x \forall y P(x, y)$	4.	$\exists x \exists y \ P(x, y)$
(a)	Only 2	(b)	2, 3, 4
(c)	1, 2, 3	(d)	All of these

Q.27 The number of vertices in a 4-regular graph with 32 edges?

(a) 8 (b) 16 (c) 24 (d) 4

Q.28 Let *Z* be the set of integers and

Let * be a binary operator defined as a * b = ab + b

- The structure (Z, *) is
- (a) A groupoid and not a semigroup.
- (b) A semigroup but not a monoid.
- (c) A monoid but not a group.
- (d) A group.
- **Q.29** Let P(x), Q(x) and R(x) be the statements "x is duck", "x is annoying", and "x is dancer", respectively. Then which of following is/ are true when statement are expressed using quantifiers, logic connective and P(x), Q(x) and R(x).
 - **I.** All ducks are annoying can be expressed as $\forall x (P(x) \land Q(x))$.
 - **II.** Some dancers are not annoying can be expressed as $\exists x \ (R(x) \rightarrow \neg Q(x))$.
 - (a) I is true II is false
 - (b) II is true I is false
 - (c) Both I and II are true
 - (d) Both I and II are false

Q.30 Suppose that P(x, y) means "*x* is a parent of *y*" and M(x) means "*x* is male". If F(v, w) equals $M(v) \land \exists x \exists y \ (P(x, y) \ P(x, v) \ (y \neq v) \land P(y, x))$

w)).What is the meaning of the expression *F*(*v*, *w*)?

- (a) v is a brother of w.
- (b) v is a nephew of w.
- (c) v is an uncle of w.
- (d) v is a grandfather of w.

	LASS T	ΓES	БТ ——			S.N	lo. : 01JP_CS	_0304	42023
India's Best Institute for IES, GATE & PSUs									
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Pb: 011-45124612									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
	Dic	~	oto	M	ath/		natio		
	DIS	Cr	ele		alne	3 N	nali	CS	
COMPUTER SCIENCE & IT									
	(MPUTE	R	SCIEN	CE	& IT		
	(SCIEN :03/04/2			_	
	(102						_	
	(_	
ANS	SWER KEY							_	
<u>ANS</u> 1.				ſest		202		25.	(a)
	SWER KEY	>	Date of T	Test	:03/04/2	2023	3	 25. 26.	
1.	SWER KEY (b)	> 7.	Date of T	Г еst 13. 14.	:03/04/2	2 02 : 19. 20.	3 (c)		(b)
1. 2.	SWER KEY (b) (a)	> 7. 8. 9.	Date of T (b) (b)	Г еst 13. 14. 15.	:03/04/2 (a) (d)	2 02 : 19. 20. 21.	3 (c) (d)	26.	(b) (b)
1. 2. 3.	SWER KEY (b) (a) (a)	 7. 8. 9. 10. 	Date of 7 (b) (b) (d) (b)	Г еst 13. 14. 15.	: 03/04/2 (a) (d) (b) (b)	2 02 : 19. 20. 21.	3 (c) (d) (d) (c)	26. 27.	(b) (b) (a)

DETAILED EXPLANATIONS

1. (b)

Total number of letters = 15 Number of T's = 3 First place 12 letters other than T's at dot places. X. X.

The number of ways = $\frac{12!}{5!3!2!}$

Since no two T's are together, thus place T's at cross places whose number = 13

Their arrangements are $\frac{{}^{13}P_3}{3!}$

Total number of ways = $\frac{12!}{5!3!2!} \times \frac{^{13}P_3}{3!}$

2. (a)

Any planar graph $G \Rightarrow \chi(G) \le 4$ Every face is bordered by exactly 3 edges $\Rightarrow \chi(G) \ge 3$ $\therefore \qquad \chi(G) = 3 \text{ or } 4$ So, $\chi(G)$ can never have the value 2.

3. (a)

$$\begin{bmatrix} (p \land q) \rightarrow (p \lor q) \end{bmatrix} \lor \sim p \lor q \equiv \sim (p \land q) \lor (p \lor q) \lor \sim p \lor q$$
$$\equiv (\sim p \lor \sim q) \lor (p \lor q) \lor \sim p \lor q$$
$$\equiv (\sim p \lor p) \lor (\sim q \lor q) \lor \sim p \lor q$$
$$\equiv T \lor T \lor \sim p \lor q \equiv T$$

4. (a)

LUB = g, GLB = c
$$a \lor i$$
 = g and $a \land i$ = c

 \therefore *a* has only 1 complement [complement of a = i]

[Note: *x* and *y* are complement to each other iff $x \lor y = LUB$ and $x \land y = GLB$]

5. (d)

 $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)\}$ R is not reflexive: (3, 3) \notin R

R is not reflective: (5, 5) $\not\in$ R *R* is symmetric: if $(x + y) \le 5 \Rightarrow (y + x) \le 5$ *R* is not antisymmetric: (1, 2) and (2, 1) in *R R* is not transitive: (3, 1) and (1, 3) in *R*, but (3, 3) \notin *R* \therefore *R* is symmetric.

6. (a)

x + y + z = 17 $x \ge 1, y \ge 1, z \ge 1$ Put x = 1 + u, y = 1 + v, z = 1 + w $\Rightarrow \qquad u + v + w = 17 - 3 = 14$ Now number of solutions in non-negative integers

 $\begin{pmatrix} 14+3-1 \\ 14 \end{pmatrix} = \begin{pmatrix} 16 \\ 14 \end{pmatrix} = \begin{pmatrix} 16 \\ 2 \end{pmatrix} = 120$

7. (b)

Given: $\forall x \in R$, if x > 2 then $x^2 > 4$ Contrapositive is: $\forall x \in R$, if $x^2 \le 4$ then $x \le 2$ Converse is: $\forall x \in R$, if $x^2 > 4$ then x > 2Inverse is: $\forall x \in R$, if $x \le 2$ then $x^2 \le 4$ \therefore Option (b) is correct.

8. (b)

Example: $C_{2n} \Rightarrow n = 2 \Rightarrow C_4$

A cycle graph with even vertices has 2 perfect matchings.

9. (d)

$$X = \{\{ \}, \{a\}\}$$

$$X = \{p, q\} \text{ [Assume } p = \{ \}, q = \{a\}\text{]}$$

$$P(X) = \{\{ \}, \{p\}, \{q\}, \{p, q\}\}$$

$$= \{\{ \}, \{\{ \}\}, \{\{a\}\}, \{\{ \}\}, \{a\}\}\}$$

10. (b)

Example: In how many ways can the pack of 52 cards be partitioned into 4 sets of size 13.

$$\binom{52}{13}\binom{39}{13}\binom{26}{13}\binom{13}{13} = \frac{(52)!}{(13!)^4}$$

All partitions are not distinct. Each distinct partition arises in 4! ways.

Therefore number of ways =
$$\frac{(52)!}{(13!)^4 \cdot 4!}$$

Similarly,
$$\frac{\prod_{i=0}^{m-1} \binom{mn-in}{n}}{m!} = \frac{(mn)!}{(n!)^m \cdot m!}$$

So, option (b) is correct.

11. (d)

$$\exists x (P(x) \to \exists y \ Q(y)) \cong \neg \forall x \neg (P(x) \to \exists y \ Q(y))$$
$$\cong \exists x (\neg P(x) \lor \exists y \ Q(y))$$
$$\cong \exists x (\neg \exists y \ Q(y) \to \neg P(x))$$
$$\cong \neg \forall x (P(x) \land \neg \exists y \ Q(y))$$

So option (d) is correct.

12. (b)

For every person x, if person x is female and person x is a parent, then there exists a person y such that person x is the mother of person y.

F(x) : *x* is female P(x) : *x* is a parent. M(x, y) : *x* is the mother of *y*

$$\forall x \big(\big(F(x) \land P(x) \big) \to \exists y \, M(x, y) \big) \cong \forall x \, \exists y \big(\big(F(x) \land P(x) \big) \to M(x, y) \big)$$

13. (a)

is Hamiltonian [:: Hamiltonian cycle exists 1, 2, 9, 8, 7, 5,

6, 3, 4, 1]

 G_2 : Not Hamiltonian graph [:: Hamiltonian cycle does not exists in G_2]

 \therefore Only G_1 is Hamiltonian graph.

14. (b)

Let $n = 2 \Rightarrow$ Number of vertices = 8 [:: Number of vertices in G = 4n]

- \Rightarrow 3 components [Note: For any *n*, the #components in *G* = 3]
- \therefore Option (d) is correct for Q.14

$$V(C_1) = \{1, 3, 5, 7\} \Rightarrow m_1 = 4$$

$$V(C_2) = \{2, 6\} \Rightarrow m_2 = 2$$

$$V(C_3) = \{4, 8\} \Rightarrow m_3 = 2$$

max = 4

In general, 'G' with 4n vertices has 3 components

$$V(C_1) = \{1, 3, 5, 7, 9, 11, 13, 15, \dots\} \Rightarrow m_1 = 2n$$

$$V(C_2) = \{2, 6, 10, 14, 18, \dots\} \Rightarrow m_2 = n$$

$$V(C_3) = \{4, 8, 12, 16, 20, \dots\} \Rightarrow m_3 = n$$

:. Max $(m_1, m_2, m_3) = 2n$

 \therefore Option (b) is correct for Q. 15

16. (b)

If *G* is planar then $e \le 3n - 6$ but converse need not be true. If *G* is not planar then e > 3n - 6 and converse holds. \therefore If $e \le (3n - 6)$ then *G* need not be planar.

17. (a)

General solution: $T(n) = C_1 \cdot 3^n + C_2 \cdot 2^n$

$$\begin{bmatrix} \text{Where Homogeneous part: } (x-3) = 0 \implies x = 3 \\ \text{Particular solution: } C_2 \cdot 2^n \end{bmatrix}$$
$$T(0) = 1, T(1) = 3.T(0) + 2' = 3 + 2 = 5 \\ T(n) = C_1 \cdot 3^n + C_2 \cdot 2^n \\ T(0) = C_1 \cdot 3^0 + C_2 \cdot 2^0 \implies 1 = C_1 + C_2 \\ T(1) = C_1 \cdot 3' + C_2 \cdot 2' \implies 5 = 3C_1 + 2C_2 \\ \hline C_1 = 3, C_2 = -2 \end{bmatrix}$$

$$\therefore T(n) = 3.3^n - 2.2^n \\ = 3^{n+1} - 2^{n+1}$$

18. (c)

 $\forall x \ \forall y \ \forall z \ ((Apple (x) \land Apple (y) \land Apple (z)) \rightarrow (x = y \lor x = z \lor y = z))$

19. (c)

 S_1 is true but converse of S_1 is not true.

 S_2 is true and converse of S_2 is also true because *G* is connected graph.

20. (d)

p	q	$p \rightarrow q$	$\sim (p \rightarrow q)$	$\sim q$	$\sim (p \rightarrow q) \rightarrow \sim q$
Τ	T	T	F	F	Т
T	F	F	Т	T	Т
F	T	Т	F	F	Т
F	F	Т	F	T	Т
p	q	$p \rightarrow q$	$\sim q \rightarrow \sim p$	$(p \rightarrow$	$q) \leftrightarrow (\sim q \rightarrow \sim p)$
Т	Т	Т	Т	Т	
T	F	F	F	T	
F	Т	Т	Т	T	
F	F	Т	Т	Т	

21. (d)

- (a) If x = 0 then we don't get real number.
- (b) If x = -1 we don't get real number.
- (c) For x = 1 we get two images.
- (d) For every value of *x* we get only one image and if we give real numbers, we get real numbers.

23. (c)

Since

$$f(1, 2) = 3 f(2, 1) = 3$$

It is not one-to-one i.e., not injective.

Since $\forall a \in R$

$$f(a, 0) = 0$$

So, every real number has a partner (a, 0) in $R \times R$.

So it is onto i.e., subjective.

So the function is subjective but not injective.

25. (a)

The position of the one vowel can be chosen in $6C_1 = 6$ ways. Then the vowel can be chosen in $5C_1 = 5$ ways. Then the remaining 5 positions in the word can be filled in 21^5 ways by using consonants.

So answer is $6 \times 5 \times 21^5$.

26. (b)

If x = 1 and y = 1 it is not true so '1' is false.

For all *x* we can have atleast one *y* so that given equation is true. So 2 is true. For atleast one *x* we have any *y* such that p(x, y) is true. If $x \ge 2$ it is true so 3 is true. For atleast one *x* we have atleast one *y* such that p(x, y) is true. So 4 is true.

27. (b)

Sum of degrees theorem. $4*V = 2 \times E = 64$ V = 16

29. (d)

- (i) Correct expression is $\forall x (P(x) \rightarrow Q(x))$.
- (ii) $\exists x (R(x) \land \neg Q(x))$ is the correct expression.

####