

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

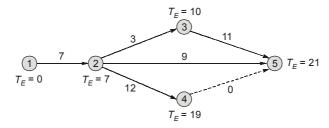
Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

CPMT-PERT

CIVIL ENGINEERING

Date of Test: 08/05/2023

ANSWER KEY > 25. (a) 7. (c) 13. (a) 19. (a) (a) 2. 20. (c) (a) (d) 14. (a) 26. (b) 3. (c) 9. (c) 15. (d) 21. (b) 27. (c) 10. (d) (d) 16. (a) 22. (c) 28. (c) (b) 11. (d) 17. (b) 23. (c) 29. (a) 12. (a) 18. (c) (a) 24. (b) 30. (d)


DETAILED EXPLANATIONS

1. (a)

Only *D* is predecessor to activity *F*

2. (a)

Activity	1-2	2-3	2-4	3-5	2-5
Expected time (in days)	7	3	12	11	9

3. (c)

Cost slope =
$$\frac{8600 - 6000}{8 - 3} = 520$$

For duration of 5 days

6. (a)

In bar charts, inter dependences between various activities is not shown.

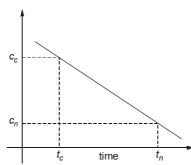
7. (c)

Correct sequence of analysing a project will be as follows:

- 1. Work break down structure.
- 2. Network diagram.
- 3. Resource allocation and scheduling.
- 4. Project completion time.
- 5. Time cost study.

8. (d)

Project duration will be 4T as there are four activities are in series but over all project duration will be 4T $\pm 3\sigma$.


$$\sigma$$
 for entire project = $\sqrt{K^2 + K^2 + K^2 + K^2}$

$$\Rightarrow$$
 $\sigma = 2K$

 \therefore Over all project duration = $4T \pm 6K$

9. (c)

Cost slope =
$$\frac{c_c - c_n}{t_n - t_c}$$

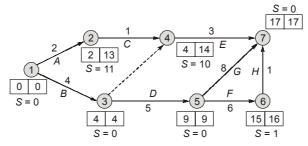
10. (d)

FDB =
$$1 - \left(\frac{c_s}{c_i}\right)^{1/n}$$

= $1 - \left(\frac{2000}{16000}\right)^{1/3} = 0.5$

Cost of machine = ₹100000

Rate of interest, i = 10% = 0.1


Capital recovery factor (CRF) = $\frac{i(1+i)^n}{(1+i)^n - 1}$

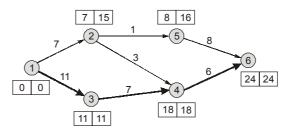
$$\Rightarrow \qquad \text{CRF} = \frac{0.1(1+0.1)^{20}}{(1+0.1)^{20}-1} = 0.11746$$

 \therefore The annual equipment cost = 100000 \times 0.11746 = ₹11746

12. (a)

For given network diagram,

Project completion time = 17 weeks

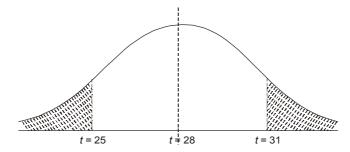

Critical path = 1-3-5-7

Slack of event 4 = 10 weeks

Total float of activity 6 - 7 = 1 week

13. (a)

Activity	Expected time (days) $t_E = \frac{t_o + t_p + 4t_m}{6}$	Variance $\sigma^2 = \left(\frac{t_p - t_o}{6}\right)^2$	
1-2	7	2.78	
1-3	11	2.78	
2-4	3	0.11	
2-5	1	0	
3-4	7	1	
4-6	6	1	
5-6	8	1	



Expected time = 24 days

Critical path = 1-3-4-6

Variance for critical path = 2.78 + 1 + 1 = 4.78

14. (a)

For given project,

Standard deviation $\sigma = \sqrt{9} = 3$ days

Probability factor for
$$T_S = 25$$
, $Z = \frac{25 - 28}{3} = -1$

Probability of completion within 25 days

$$= 100 - 84 = 16\%$$

For probability of completion after 31 days

Probability factor,
$$Z = \frac{31-28}{3} = 1$$

Probability of completion = 100 - 84 = 16%

Total probability = 16 + 16 = 32%

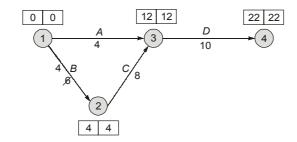
15. (d)

During crashing of an activity, the duration of activity is reduced due to which:

- 1. Indirect cost decreases.
- 2. Direct cost increases.

16. (a)

Activity	Crash limit (days)	Cost Slope (₹/day)
А	4 - 3 = 1	(105-80)/(4-3)=25
В	6 - 4 = 2	(250-180)/(6-4)=35
С	8 - 5 = 3	(320-200)/(8-5)=40
D	10 - 6 = 4	(530-350)/(10-6)=45

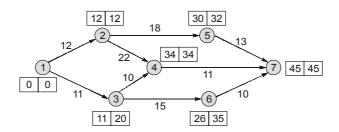

Activity Critical

C

D

Since the critical activity *B* has the lowest crash cost per day, it should be crashed first. Hence, crash activity B by 2 days

В


Critical path is still B-C-D

Project completion time = 22 days

Project cost = 810 + (2) (35) = ₹880

17. (b)

Network diagram,

For activity 3-4,

$$EST = 11$$

$$EFT = 11 + 10 = 21$$

$$LFT = 34$$

Total float = 34 - 21 = 13 days

For activity 3-6,

$$EST = 11$$

$$EFT = 11 + 15 = 26$$

$$LFT = 35$$

Total float = 35 - 26 = 9 days

Sum of total float = 13 + 9 = 22 days

18. (c

For the given project, available paths are:

Available paths

- (i) $1-2-3-5-6 \Rightarrow \text{Time duration} = 18 \text{ days}$
- (ii) $1-2-4-5-6 \Rightarrow \text{Time duration} = 18 \text{ days}$

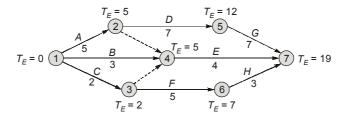
So both paths are critical.

Combination of activities to crash the path, and their respectively cost slopes are given below:

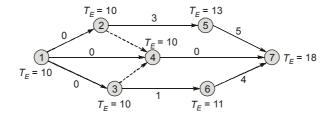
- (i) only *A* → ₹ 600/day
- (ii) only *F* → ₹700/day
- (iii) B and C \rightarrow 200 + 300 = ₹ 500/day
- (iv) B and E \rightarrow 200 + 200 = ₹ 400/day
- (v) D and C \rightarrow 300 + 300 = ₹ 600/day
- (vi) D and E \rightarrow 300 + 200 = ₹ 500/day

So we will crash that combination of activity for which slope is minimum i.e. *B* and *E*.

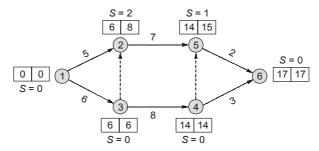
19. (a)


Path available	Duration (days)	Standard deviation (days)
1-2-4-6	5 + 8 + 17 = 30	
1-2-4-5-6	5 + 8 + 5 + 18 = 36	2.345
1-2-5-6	5 + 13 + 18 = 36	2.69
1-3-5-6	4 + 11 + 18 = 33	

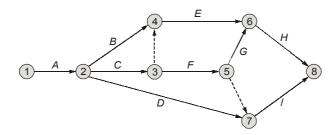
So, number of critical path = 2


Path with more uncertainty = 1 - 2 - 5 - 6

20. (c)


For given network diagram

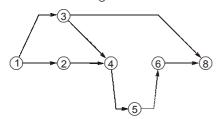
After updating



21. (b)

Sum of slacks = 2 + 1 = 3 days

22. (c)


23. (c)

There is an extra dummy between events (7) and (8).

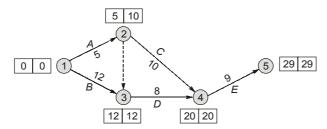
There are two arrows joining events (2) and (4).

There is extra dummy connecting nodes (4) and (6).

The correct diagram will be

So there are two errors.

24. (b)


Expected time
$$= \frac{t_0 + t_p + 4t_m}{6} = \frac{12 + 25 + 20 \times 4}{6}$$
$$= \frac{117}{6} \text{ minutes}$$
Standard deviation, $\sigma = \frac{t_p - t_0}{6} = \frac{25 - 12}{6} = \frac{13}{6} \text{ minutes}$

Minimum time alloted,
$$t_{\rm min} = t_E - 3\sigma$$

= $\frac{117}{6} - \frac{3 \times 13}{6} = 13$ minutes

25. (a)

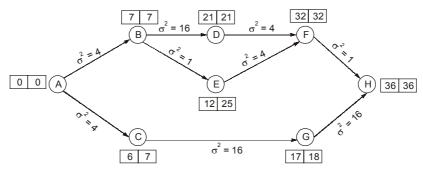
For given relationship

26. (b)

Let N be the number of unit

At breakdown point,

$$\Rightarrow$$
 1000000 + 100 × N = 5000000


$$\therefore \qquad \qquad N = 40000 \, \text{units}$$

Now, Margin of safety =
$$\frac{\text{Total sales} - \text{Sales at BEP}}{\text{Total sales}}$$

$$\Rightarrow \frac{10}{100} = \frac{5000000 - 40000 \times x}{5000000}$$

$$\therefore \qquad \qquad x = ₹112.5$$

27. (c)

Standard deviation of project,

$$\sigma = \sqrt{4+16+4+1} = 5 \text{ days}$$

$$Z = \frac{T_S - T_E}{\sigma} = \frac{31 - 36}{5} = -1$$

$$P(t \le 31) = P(Z \le -1)$$

= 0.5 - ϕ (1) = 0.5 - (0.8413 - 0.5)
= 0.1587 = 15.87%

28. (c)

From straight line method of depreciation

Depreciation,
$$D = \frac{C_i - C_s}{n}$$

$$D = \frac{10000 - 1000}{5} = \text{Rs.}1800$$
Book value, $B_m = c_i - mD$

$$B_2 = 10000 - 2 \times 1800$$

$$= \text{Rs.} 6400$$

29. (a)

Project No.	Cost (₹)	No. of Cars	Unit Cost (₹)
1.	450000	150	3000
2.	320000	80	4000
3.	600000	120	5000
4.	360000	90	4000
5.	300000	60	5000
6.	660000	220	3000
7.	280000	70	4000
8.	720000	180	4000

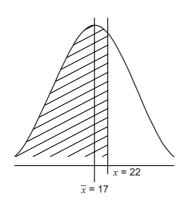
Forecast weighted unit cost,

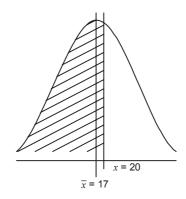
$$UC = \frac{A + 4B + C}{6}$$
where,
$$A = ₹5000$$

$$B = \frac{3000 + 4000 + 5000 + 4000 + 5000 + 3000 + 4000 + 4000}{8} = ₹4000$$

$$C = ₹3000$$

$$UC = \frac{5000 + 4 \times 4000 + 3000}{6} = ₹4000$$
Project cost = $UC \times \text{Number of units}$


30. (d)


$$\overline{X} = 17 \text{ units}$$

Variance,
$$\sigma^2 = 9$$

Standard deviation, $\sigma = 3$

$$Z = \frac{x - \overline{x}}{\sigma}$$

For 22 days,

$$Z = \frac{22-17}{3} = \frac{5}{3} = 1.67$$

$$P(Z < 1.67) = 95.2\%$$

For 20 days,

$$Z = \frac{20-17}{3} = \frac{3}{3} = 1$$

$$P(Z < 1) = 84.13\%$$

$$P(Z < 1.66) - P(Z < 1) = 95.2\% - 84.13\%$$
$$= 11.07\%$$