mRDE ERSU
India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

COMPUTER ORGANISATION

ELECTRONICS ENGINEERING

Date of Test : 04/05/2023

ANSWER KEY >
1.
(b)
7. (d)

13
(b)
19. (b)
25. (c)
2. (c)
8. (c)
14. (c)
20. (d)
26. (c)
3. (b)
9. (c)
15. (d)
21. (b)
27. (b)
4. (d)
10. (a)
16. (a)
22. (a)
28. (c)
5.
(d)
11. (c)
17.
(b)
23. (c)
29. (c)
6.
(b)
12. (b)
18. (a)
24. (c)
30. (d)

Detailed Explanations

1. (b)

2. (c)

Size of instructions 24 bits.
Starting address of the program is 300 . The size of instruction is 3 byte long so that the address is always the multiple of 3 byte, next address is 600 , it is also the next instruction of the program.
4. (d)

Instruction pipelining is a technique that implements a form of parallelism called instruction level parallelism with a single processor. It therefore allows faster CPU throughput.
6. (b)

It is using immediate addressing mode hence the value stored in the location is added with 52.
7. (d)

This instruction is in base with offset addressing mode.
8. (c)

Number of cycles per instruction $=4$
Total number of micro-instruction $=400 \times 4=1600$
Number of bit for $\mathrm{CAR}=\left\lceil\log _{2}(1600)\right\rceil \simeq 11$ bit

Number of bit for CDR $=5+6+8+11=30$ bit
9. (c)

Based addressing mode and relative addressing mode are suitable for program relocation at runtime.
10. (a)

Interrupt vector gives the branch address of an interrupting device.
11. (c)

2-address instruction

- $\left(2^{32}-256\right)$ instruction left after 2 -address instruction.
- Number of 1-address instruction $=\left(\left(2^{32}-256\right) \times 2^{16}\right)$
- \quad Number of 0 -address instruction $=\left(\left(2^{32}-256\right) \times 2^{16}-102\right) \times 2^{16}$

12. (b)

$$
\mathrm{L}_{1} \text { miss rate }=\frac{40}{1000}=4 \%
$$

L_{2} miss rate (we need to take local miss rate) $=\frac{10}{40}=25 \%$

$$
\text { Average access time }=\text { Hit time }\left(L_{1}\right)+\text { Miss rate }\left(L_{1}\right)
$$

Where,
Miss rate $\left(L_{1}\right)=$ Hit time $\left(L_{2}\right)+$ Miss rate $\left(L_{2}\right) \times$ Miss penalty
Average access time $=1+4 \%[15 \mathrm{cc}+25 \% \times 200 \mathrm{cc}]$

$$
\begin{aligned}
& =1+0.04[15 \mathrm{cc}+50 \mathrm{cc}] \\
& =3.6 \mathrm{cc}
\end{aligned}
$$

13. (b)

$$
\begin{aligned}
& \text { Number of sets }=\frac{128}{8}=2^{4}=4 \text { bits } \\
& \text { Number of blocks in MM }=4 \mathrm{k}=2^{12} \\
& \text { Total MM size }=2^{12} \times 1024 \text { words } \\
&=2^{12} \times 2^{10} \text { words }=2^{22} \text { words } \\
& \begin{array}{|c|c|c|}
\hline \text { TAG } & \text { Set } & \text { Word } \\
\hline
\end{array} \\
& \begin{array}{c}
(22-14) \\
8 \text {-bit }
\end{array} 4 \text {-bit } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
\text { TAG bits } & =\text { Total }-(\text { Set }+ \text { word }) \text { bit } \\
& =22-(10+4)=8 \text {-bit }
\end{aligned}
$$

14. (c)

$$
\begin{aligned}
\text { Size of cache } & =32 \mathrm{kB} \\
& =32 \times 2^{10} \text { byte } \\
& =2^{5} \times 2^{10} \text { byte } \\
& =2^{15} \text { byte } \Rightarrow 15 \text { bits } \\
\text { Size of tag } & =32-15=17 \text { bits } \\
\text { Cache indexing size } & =10 \text { bits }
\end{aligned}
$$

15. (d)

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}	C_{11}
S_{4}						I_{1}		I_{2}	I_{3}	I_{3}	I_{4}
S_{3}					I_{1}	I_{2}	I_{2}	I_{3}	I_{4}	I_{4}	
S_{2}		I_{1}	I_{1}	I_{1}	I_{2}	I_{3}	I_{3}	I_{4}			
S_{1}	I_{1}	I_{2}	I_{2}		I_{3}	I_{4}	I_{4}				

$$
\text { Throughput }=\frac{\text { Number of task completed }}{\text { Total time taken to process the tasks }}=\frac{4}{11} \text { cycles }
$$

16. (a)

Configurations for CPU in decreasing order of operating speeds:
Hardwired control > Horizontal micro programming > Vertical Micro-programming
17. (b)

In horizontal micro-programming signals are present in decoded form. So number of signal bits:

$$
=25+30+38+27+20=140 \text { bits }
$$

In vertical micro-programming signals are present in encoded form. So, number of signal bits:

$$
\begin{gathered}
=\left\lceil\log _{2}(25)\right\rceil+\left\lceil\log _{2}(30)\right\rceil+\left\lceil\log _{2}(38)\right\rceil+\left\lceil\log _{2}(27)\right\rceil+\left\lceil\log _{2}(20)\right\rceil \\
=5+5+6+5+5=26 \mathrm{bit}
\end{gathered}
$$

So, total bits saved using vertical micro-programming $=140-26=114$
18. (a)

Anti data dependency \rightarrow Write after Read Hazard (WAR)
True data dependency \rightarrow Read After Write Hazard (RAW)

	WAR Hazards		RAW Hazards (Adjacent)
1.	$I_{3}-I_{1}\left(R_{1}\right)$	1.	$I_{3}-I_{2}\left(R_{2}\right)$
2.	$I_{4}-I_{3}\left(R_{2}\right)$	2.	$I_{4}-I_{3}\left(R_{1}\right)$
		3.	$I_{5}-I_{4}\left(R_{2}\right)$

19. (b)

- Group G_{1} and G_{2} use horizontal micro-programming.

Total bits are : $32+45=77$

- Group G_{3}, G_{4}, G_{5} and G_{6} are using vertical micro-programming.

Hence, total bits are

$$
\begin{aligned}
& =\left\lceil\log _{2} 66\right\rceil+\left\lceil\log _{2} 33\right\rceil+\left\lceil\log _{2} 13\right\rceil+\left\lceil\log _{2} 21\right\rceil \\
& =7+6+4+5=22
\end{aligned}
$$

Total bits for control word $=77+22=99$
20. (d)

The fetch ends with the instruction getting decoded and being placed in the IR and the PC getting incremented.
21. (b)

Number of control address $=$ Number of instruction \times Number of clock cycles

$$
=150 \times 8=1200
$$

$$
\text { Number of bits for }(C A R)=\left\lceil\log _{2} 1200\right\rceil=11 \text { bits }
$$

Since horizontal micro-programming is used. So number of bits for control signal $=130$ bits.
So, control word size in bits $=130+11=141$
22. (a)

$$
\begin{aligned}
& S=\left[(1-F)+\frac{F}{S}\right]^{-1} \\
& S=\left[(1-0.6)+\frac{0.6}{4}\right]^{-1} \\
& S=[0.4+0.15]^{-1} \\
& S=1.81
\end{aligned}
$$

23. (c)

$$
\begin{aligned}
\text { Speed-up } & =\frac{\text { Pipeline depth }}{1+\text { Branch frequency } \times \text { Branch penalty }} \geq 3 \\
\frac{6}{1+P \times 3} & \geq 3 \\
9 P+3 & \leq 6 \\
P & \leq \frac{1}{3} \\
P & \leq 0.33
\end{aligned}
$$

24. (c)
$I_{1}: \quad 4000-4005 \quad \rightarrow \quad$ Data Transfer
$I_{2}: \quad 4006-4010 \quad \rightarrow \quad$ ALU operation
$I_{3}: \quad 4011-4015 \quad \rightarrow \quad$ ALU
$I_{4}: \quad 4016-4021 \quad \rightarrow \quad$ Data transfer
$I_{5} \quad: \quad 4022-4026 \quad \rightarrow \quad$ ALU
$I_{6}: \quad 4027-4031 \quad \rightarrow \quad$ ALU
$I_{7}: \quad 4032-4034 \quad \rightarrow \quad$ Branch Instruction
$I_{8} \quad: \quad 4035-4039 \quad \rightarrow \quad$ ALU
$I_{9} \quad: \quad 4040-4045 \quad \rightarrow \quad$ Data Transfer
Return address (4032) is pushed onto the stack.
25. (c)
(III) and (IV) are true.
26. (c)

$$
\begin{aligned}
\text { Number of stalls/Instruction } & =0.65 \times 0+0.35 \times 3 \\
& =1.05 \\
\text { Speed-up }(\mathrm{s}) & =\frac{\text { No. of stages in pipelines }}{(1+\text { No. of stalls/Instruction })} \\
& =\frac{5}{1+1.05}=\frac{5}{2.05}=2.44
\end{aligned}
$$

27. (b)
$R_{1} \leftarrow u \quad \cdots \cdots \cdots . \quad(u=1)$
$R_{2} \leftarrow v \quad \cdots \cdots \cdots . \quad(v=10)$
$R_{3} \leftarrow w \quad \cdots \cdots \cdots . \quad(w=20)$
$R_{1} \leftarrow R_{1}+R_{2} \quad \cdots \cdots \cdots . \quad(x=u+v)$
$R_{1} \leftarrow R_{3}+R_{1} \quad \cdots \cdots \cdots . \quad(y=w+x)$
$R_{2} \leftarrow R_{3}+R_{1} \quad \cdots \cdots \cdots . \quad(z=w+y)$
$R_{3} \leftarrow R_{3}+R_{1} \quad \cdots \cdots \cdots . \quad(v=w+y)$
$R_{1} \leftarrow R_{2}+R_{3} \cdots \cdots \cdots . \quad(y=v+2)$
$R_{3} \leftarrow 5+R_{1} \quad \cdots \cdots \cdots . \quad(x=5+y)$
return $\left(R_{2}+R_{3}\right) \ldots \ldots \ldots . \quad$ return $(x+5)$
hence 3 register needed only.
28. (c)

$$
\begin{aligned}
T_{\mathrm{avg}} & =(1+\# \text { stalls/instruction }) \times \text { Cycle Time } \\
& =1+(10 \% \times 1)+(10 \% \times 2)+(5 \% \times 2) \\
& =1+0.1+0.2+0.1 \\
& =1.4 \text { cycles }
\end{aligned}
$$

29. (c)

Let, total number of 2-address instructions $=x$.
Given that number of 1 -address instruction $=256$.
Therefore,

$$
\begin{aligned}
\left(2^{8}-x\right) \times 2^{4} & =256 \\
2^{8}-x & =2^{4} \\
x & =256-16=240
\end{aligned}
$$

30. (d)

Let's take 100 instructions are $I_{1}, I_{2}, \ldots . ., I_{98}, I_{99}, I_{100}$.

Instruction	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
I_{1}	$I F$	$I D$	$E X$	$M O$								
I_{2}		$I F$	$I D$	$E X$	$M O$							
I_{3}			$I F$	$I D$	$E X$	$M O$						
I_{4}				$I F$	$I D$	$E X$	$M O$					
I_{5}					$I F$	$I D$	$E X$					
I_{6}						$I F$	$I D$					
I_{98}							$I F$	$I D$	$E X$	$M O$		
I_{99}								$I F$	$I D$	$E X$	$M O$	
I_{100}									$I F$	$I D$	$E X$	$M O$

$$
n=9
$$

Total time required $=(k+n-1) t_{p}$

$$
\left[t_{p}=6+3=9 \mathrm{~ns}\right]
$$

$$
\begin{aligned}
& =(4+9-1) 9 \mathrm{~ns} \\
& =108 \mathrm{~ns}
\end{aligned}
$$

