SI.: 01 SK_EC_ABCD_040523										
ERS MADE EASY										
		India's	s Best Ir	nstitute fo	or IES,	, gate &	PSUs			
	Delh	i Bhopal	Hydera	bad Jaipur	r Pune	Bhubane	swar K	olkata	_	
	Web:	www.made	eeasy.in	E-mail: info	@madee	easy.in P	h: 011-45	124612		
C	COM	IPU	TE	R OF	RG	ANI	SA'	ΤΙΟΙ	Ν	
	El	_EC	rroi	NICS	EN	GINE	ERIN	١G		
	El	_EC ⁻	TROI	VICS f Test : (EN(04/0	GINE	ERIN 3	NG		
	EL	_EC ⁻	TROI Date o	VICS f Test : (EN(04/0	GINE 5/202	ERIN 3	١G		
	El	_ECT	TROI Date o	VICS f Test : (EN(04/0	GINE 5 /202 :	ERIN 3	١G		
	El	_ECT	TROI Date o	VICS f Test : (EN(04/0	GINE 5/202	ERIN 3	NG		
ANSW	EL er key	_EC [TROI Date o	VICS f Test : (EN(04/0	GINE 5/202	ERIN 3	NG		
ANSW	EL ER KEY (b)	_EC [CRON Date o	NICS f Test : (13.	EN(04/0	GINE 9 5/202 : 19.	(b)	NG 	(c)	
<u>ANSW</u> 1. 2.	EL ER KEY (b) (c)	_EC [7. 8.	CROI Date o (d) (c)	NICS f Test : (13. 14.	EN(04/0 (b) (c)	GINE 9 5/202 19. 20.	ERIN 3 (b) (d)	NG 25. 26.	(c) (c)	
ANSW 1. 2. 3.	ER KEY (b) (c) (b)	_EC [7. 8. 9.	CRO Date o (d) (c) (c)	NICS f Test : (13. 14. 15.	EN(04/0 (b) (c) (d)	GINE 9 5/202 19. 20. 21.	ERIN 3 (b) (d) (b)	NG 25. 26. 27.	(c) (c) (b)	
ANSW 1. 2. 3. 4.	ER KEY (b) (c) (b) (d)	_EC [7. 8. 9. 10.	CRO Date o (d) (c) (c) (a)	NICS f Test : (13. 14. 15. 16.	EN(04/0 (b) (c) (d) (a)	GINE 95/2023 19. 20. 21. 22.	ERIN 3 (b) (d) (b) (a)	25. 26. 27. 28.	(c) (c) (b) (c)	
ANSW 1. 2. 3. 4. 5.	ER KEY (b) (c) (b) (d) (d)	_EC [7. 8. 9. 10. 11.	CRO Date o (d) (c) (c) (a) (c)	NICS f Test : (13. 14. 15. 16. 17.	EN(04/0 (b) (c) (d) (a) (b)	GINE 05/2023 19. 20. 21. 22. 23.	ERIN 3 (b) (d) (b) (a) (c)	25. 26. 27. 28. 29.	(c) (c) (b) (c) (c)	

Detailed Explanations

1. (b)

2. (c)

Size of instructions 24 bits.

Starting address of the program is 300. The size of instruction is 3 byte long so that the address is always the multiple of 3 byte, next address is 600, it is also the next instruction of the program.

4. (d)

Instruction pipelining is a technique that implements a form of parallelism called instruction level parallelism with a single processor. It therefore allows faster CPU throughput.

6. (b)

It is using immediate addressing mode hence the value stored in the location is added with 52.

7. (d)

This instruction is in base with offset addressing mode.

8. (c)

Number of cycles per instruction = 4

Total number of micro-instruction = $400 \times 4 = 1600$

Number of bit for CAR = $\lceil \log_2 (1600) \rceil \simeq 11$ bit

Branch conditions	Flag	Control Signal	CM Address
5-bit	6-bit	8-bit	11-bit
$\mathbf{D} = \mathbf{F} \cdot \mathbf{C} \cdot \mathbf{O}$		•.	

Number of bit for CDR = 5 + 6 + 8 + 11 = 30 bit

9. (c)

Based addressing mode and relative addressing mode are suitable for program relocation at runtime.

10. (a)

Interrupt vector gives the branch address of an interrupting device.

-	— 64 bit —	
Opcode	Addr 1	Addr 2
32 bit	16 bit	16 bit

2-address instruction

- $(2^{32} 256)$ instruction left after 2-address instruction.
- Number of 1-address instruction = $((2^{32} 256) \times 2^{16})$
- Number of 0-address instruction = $((2^{32} 256) \times 2^{16} 102) \times 2^{16}$

India's Beet Institute for IES, GATE & PSUs

12. (b)

$$L_{1} \text{ miss rate} = \frac{40}{1000} = 4\%$$

$$L_{2} \text{ miss rate (we need to take local miss rate)} = \frac{10}{40} = 25\%$$
Average access time = Hit time (L₁) + Miss rate (L₁)
Where, Miss rate (L₁) = Hit time (L₂) + Miss rate (L₂) × Miss penalty
Average access time = 1 + 4% [15 cc + 25% × 200 cc]
= 1 + 0.04[15 cc + 50 cc]
= 3.6 cc
(b)
Number of sets = $\frac{128}{8} = 2^4 = 4$ bits
Number of blocks in MM = 4k = 2¹²
Total MM size = 2¹² × 1024 words
= 2¹² × 2¹⁰ words = 2²² words

13.

		— 22 bit —	<u> </u>	
	TAG	Set	Word	
	(22 – 14) 8-bit	4-bit	10-bit	
TAC	G bits = T	otal – (Set	: + word) l	oit

$$= 22 - (10 + 4) = 8$$
-bit

14. (c)

Size of cache = 32 kB = 32×2^{10} byte = $2^5 \times 2^{10}$ byte = 2^{15} byte \Rightarrow 15 bits Size of tag = 32 - 15 = 17 bits Cache indexing size = 10 bits

15. (d)

	C_1	<i>C</i> ₂	<i>C</i> ₃	C_4	C_5	<i>C</i> ₆	<i>C</i> ₇	C_8	<i>C</i> ₉	<i>C</i> ₁₀	<i>C</i> ₁₁
S_4						I_1		I_2	I_3	I ₃	I_4
<i>S</i> ₃					I_1	<i>I</i> ₂	<i>I</i> ₂	I_3	I_4	I_4	
<i>S</i> ₂		I_1	I_1	I_1	I_2	I ₃	I ₃	I_4			
S_1	I_1	I_2	I_2		I ₃	I_4	I_4				

16. (a)

Configurations for CPU in decreasing order of operating speeds: Hardwired control > Horizontal micro programming > Vertical Micro-programming =

17. (b)

In horizontal micro-programming signals are present in decoded form. So number of signal bits: = 25 + 30 + 38 + 27 + 20 = 140 bits

In vertical micro-programming signals are present in encoded form. So, number of signal bits:

$$\log_2(25) \left[+ \left\lceil \log_2(30) \right\rceil + \left\lceil \log_2(38) \right\rceil + \left\lceil \log_2(27) \right\rceil + \left\lceil \log_2(20) \right\rceil \right]$$

$$= 5 + 5 + 6 + 5 + 5 = 26$$
 bit

So, total bits saved using vertical micro-programming = 140 - 26 = 114

18. (a)

Anti data dependency \rightarrow Write after Read Hazard (WAR) True data dependency \rightarrow Read After Write Hazard (RAW)

	WAR Hazards		RAW Hazards (Adjacent)
1.	$I_3 - I_1 (R_1)$	1.	$I_3 - I_2 (R_2)$
2.	$I_4 - I_3 (R_2)$	2.	$I_4 - I_3 (R_1)$
		3.	$I_5 - I_4 (R_2)$

19. (b)

- Group G_1 and G_2 use horizontal micro-programming. Total bits are : 32 + 45 = 77
- Group *G*₃, *G*₄, *G*₅ and *G*₆ are using vertical micro-programming. Hence, total bits are

 $= \left\lceil \log_2 66 \right\rceil + \left\lceil \log_2 33 \right\rceil + \left\lceil \log_2 13 \right\rceil + \left\lceil \log_2 21 \right\rceil \\ = 7 + 6 + 4 + 5 = 22$

Total bits for control word = 77 + 22 = 99

20. (d)

The fetch ends with the instruction getting decoded and being placed in the IR and the PC getting incremented.

21. (b)

Number of control address = Number of instruction × Number of clock cycles = $150 \times 8 = 1200$

Number of bits for (CAR) = $\lceil \log_2 1200 \rceil$ = 11 bits

Since horizontal micro-programming is used. So number of bits for control signal = 130 bits. So, control word size in bits = 130 + 11 = 141

22. (a)

$$S = \left[(1-F) + \frac{F}{S} \right]^{-1}$$

$$S = \left[(1-0.6) + \frac{0.6}{4} \right]^{-1}$$

$$S = [0.4 + 0.15]^{-1}$$

$$S = 1.81$$

23. (c)

> Speed-up = $\frac{\text{Pipeline depth}}{1 + \text{Branch frequency} \times \text{Branch penalty}} \ge 3$ $\frac{6}{1+P\times 3} \ge 3$ $9P + 3 \le 6$ $P \leq \frac{1}{3}$ $P \leq 0.33$

24. (c)

· ·				
I_1	:	4000 - 4005	\rightarrow	Data Transfer
I_2	:	4006 - 4010	\rightarrow	ALU operation
I_3	:	4011 - 4015	\rightarrow	ALU
I_4	:	4016 - 4021	\rightarrow	Data transfer
I_5	:	4022 - 4026	\rightarrow	ALU
I_6	:	4027 - 4031	\rightarrow	ALU
I_7	:	4032 - 4034	\rightarrow	Branch Instruction
I_8	:	4035 - 4039	\rightarrow	ALU
I_9	:	4040 - 4045	\rightarrow	Data Transfer

Return address (4032) is pushed onto the stack.

25. (c)

(III) and (IV) are true.

26. (c)

> Number of stalls/Instruction = $0.65 \times 0 + 0.35 \times 3$ Program = 1.05 Speed-up (s) = $\frac{\text{No. of stages in pipelines}}{(1 + \text{No. of stalls/Instruction})}$ 35% 65% $= \frac{5}{1+1.05} = \frac{5}{2.05} = 2.44$ 0 stalls 3 stalls

27.

(b)				
R_1	\leftarrow	и		(u = 1)
R_2	\leftarrow	υ		(v = 10)
R_3	\leftarrow	w		(w = 20)
R_1	\leftarrow	$R_1 + R_2$		(x = u + v)
R_1	\leftarrow	$R_3 + R_1$		(y=w+x)
R_2	\leftarrow	$R_3 + R_1$		(z=w+y)
R_3	\leftarrow	$R_3 + R_1$		(v = w + y)
R_1	\leftarrow	$R_{2} + R_{3}$		(y=v+2)
R_3	\leftarrow	$5 + R_1$	•••••	(x=5+y)
retu	ırn	$(R_2 + R_3)$	•••••	return ($x + 5$)
hen	ce ?	3 register	needed only	

hence 3 register needed only.

28. (c)

$$\begin{split} T_{\rm avg} &= (1 + \# \, {\rm stalls/instruction}) \times {\rm Cycle \ Time} \\ &= 1 + (10\% \times 1) + (10\% \times 2) + (5\% \times 2) \\ &= 1 + 0.1 + 0.2 + 0.1 \\ &= 1.4 \ {\rm cycles} \end{split}$$

29. (c)

Let, total number of 2-address instructions = x. Given that number of 1-address instruction = 256. Therefore, $(2^8 - x) \times 2^4 = 256$ $2^8 - x = 2^4$

$$x = 256 - 16 = 240$$

30. (d)

Let's take 100 instructions are $I_{1'}$, $I_{2'}$,, $I_{98'}$, $I_{99'}$, I_{100} .

Instruction	1	2	3	4	5	6	7	8	9	10	11	12
I_1	IF	ID	EX	МО								
I ₂		IF	ID	EX	МО							
I ₃			IF	ID	EX	МО						
I_4				IF	ID	EX	МО					
I_5					IF	ID	EX					
I ₆						IF	ID					
I ₉₈							IF	ID	EX	МО		
I ₉₉								IF	ID	ΕX	МО	
I ₁₀₀									IF	ID	EX	МО

n = 9Total time required = $(k + n - 1)t_p$ [$t_p = 6 + 3 = 9$ ns] = (4 + 9 - 1)9 ns = 108 ns