CLASS TEST

India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

STRUCTURAL ANALYSIS

CIVIL ENGINEERING

Date of Test : 27/04/2023

1. (c)
2. (d)
3. (a)
4. (c)
5. (c)
6. (b)
7. (d)
8. (d)
9. (b)
10. (b)
11. (b)
12. (c)
13. (b)
14. (c)
15. (a)
16. (c)
17. (d)
18. (a)
19. (b)
20. (b)
21. (a)
22. (a)
23. (c)
24. (c)
25. (a)
26. (a)
27. (b)
28. (d)
29. (c)
30. (c)

DETAILED EXPLANATIONS

1. (c)

No. of cuts,
$C=4$
No. of restraints,
$R=15$
Now,

$$
\begin{aligned}
D_{s} & =6 C-R \\
& =6 \times 4-15 \\
& =24-15=9
\end{aligned}
$$

2. (b)

ILD for horizonal thrust

$$
\text { So } \max H=1.5 \times 30=45 \mathrm{kN}
$$

3. (b)

Stiffness of $C D$ is less than $A B$ so frame will sway towards right.
4. (c)

5. (a)

Pass a section (1)-(1) through the truss as shown.
When the load is on left side of section the diagonal member is under compression.
When the load is on right side of section, the diagonal member is in tension.
6. (a)

By Maxwell's reciprocal theorem

$$
\begin{array}{rlrl}
& & f_{1} \Delta_{1} & =f_{2} \Delta_{2} \\
\Rightarrow & 150 \times 0.005 & =750 \times \Delta_{2} \\
\Rightarrow & \Delta_{2} & =0.001 \text { radian }
\end{array}
$$

7. (d)

Stiffness matrix coefficient,

$$
k_{11}=\frac{A E}{l}=\frac{300 \times 200 \times 10^{3} \times 10^{3}}{3000}=2 \times 10^{7} \mathrm{~N} / \mathrm{m}
$$

8. (d)

$$
\begin{aligned}
\text { Cyclic frequency } & =\frac{w_{d}}{2 \pi} \\
& =\frac{1}{2 \pi}\left[\sqrt{\frac{k}{m}}\left(\sqrt{1-\varepsilon^{2}}\right)\right] \\
& =\frac{1}{2 \pi}\left\{\sqrt{\frac{15 \times 10^{3}}{20}}\left(\sqrt{1-0.025^{2}}\right)\right\} \\
& =13.69 / \pi
\end{aligned}
$$

9. (c)

10. (d)

11. (a)

$$
\begin{array}{rlrl}
& \text { Vertical reaction; } V & =\frac{w l}{2}=\frac{15 \times 150}{2}=1125 \mathrm{kN} \\
& \text { Horizontal reaction; } H & =\frac{w l^{2}}{8 h}=\frac{15 \times 150^{2}}{8 \times 10}=4218.75 \mathrm{kN} \\
\therefore \quad & \text { Maximum tension } & =T_{\max }=\sqrt{V^{2}+H^{2}}=\sqrt{1125^{2}+4218.75^{2}}=4366.17 \mathrm{kN} \\
\therefore \quad \text { Minimum tension } & =T_{\min }=\mathrm{H}=4218.75 \mathrm{kN} \\
\therefore \quad T_{\max }-T_{\min } & =147.42 \mathrm{kN}
\end{array}
$$

12. (b)

No rigid body motion is possible in figure (1) but in figure (2), rigid body motion is possible as shown below.

13. (a)

For member $A C B$,
Moment at X,

$$
M_{x}=P R-P R(1-\cos \theta)=P R \cos \theta
$$

Strain energy stored, $W_{i}=\int \frac{M_{x}^{2} d s}{2 E I}=\int_{0}^{\pi} \frac{(P R \cos \theta)^{2} R d \theta}{2 E I}$

$$
\Rightarrow \quad W_{i}=\frac{P^{2} R^{3}}{2 E I} \times 2 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=\frac{P^{2} R^{3}}{E I} \times \frac{\pi}{4}
$$

\therefore Vertical deflection at O due to member $A C B$,

$$
\delta=\frac{\partial W_{i}}{\partial P}=\frac{\pi}{2} \frac{P R^{3}}{E I}
$$

For member OB,

Strain energy stored, $W_{i}=\int \frac{M_{x}^{2} d s}{2 E I}=\int_{0}^{R} \frac{(P x)^{2} d x}{2 E I}$

$$
W_{i}=\frac{P^{2} R^{3}}{6 E I}
$$

\therefore Vertical deflection at O due to member $O B$,

$$
\begin{aligned}
\delta & =\frac{\partial W_{i}}{\partial P}=\frac{1}{3} \frac{P R^{3}}{E I} \\
\text { Total deflection } & =\left(\frac{\pi}{2}+\frac{1}{3}\right) \frac{P R^{3}}{E I}=1.904 \frac{P R^{3}}{E I}
\end{aligned}
$$

14. (d)

Cut a section through $B C, B E$ and $E F$

$$
\begin{aligned}
\Sigma F_{y} & =0 ; \Rightarrow 20+20+F_{E F} \cos \theta+F_{B C}=0 \\
& \Sigma M_{E}
\end{aligned}
$$

From (1); $\quad F_{E F}=-60 \sqrt{2} \mathrm{kN} \quad\left(-\right.$ ve i.e. compression) $\quad\left(\sin \theta=\cos \theta=\frac{1}{\sqrt{2}}\right)$
$\therefore \quad$ Magnitude of $F_{E F}=60 \sqrt{2} \mathrm{kN}$
15. (b)

Since stiffness matrix is inverse of flexibility matrix.

$$
\therefore \text { If } \begin{aligned}
{[A] } & =k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
A^{-1} & =\frac{1}{|A|} \operatorname{adj}(A)
\end{aligned}
$$

then

$$
[A]^{-1}=\frac{1}{k|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

$\therefore \quad$ Stiffness matrix, $[k]=\frac{6 E I}{7 L^{3}}\left[\begin{array}{cc}16 & -5 \\ -5 & 2\end{array}\right]$
16. (a)

Calculation of fixed end moment,

$$
\begin{aligned}
\bar{M}_{A B} & =\frac{-75 \times 3 \times 2^{2}}{5^{2}}=-36 \mathrm{kNm} \\
\bar{M}_{B A} & =\frac{75 \times 2 \times 3^{2}}{25}=54 \mathrm{kNm}
\end{aligned}
$$

Calculation of distribution factors,

Joint	Member	\boldsymbol{k}	Σk	Deflection factor
B	$B A$	$\frac{4 E I}{5}$	$9 E I$	$\frac{4}{9}$
	$\frac{9 E}{5}$	$\frac{3 E I}{3}$		$\frac{5}{9}$

Moment distribution method table (All moments in $\mathbf{k N m}$)

Joint	A	B		C
Member	AB	BA	BC	CB
DF	0	$4 / 9$	$5 / 9$	1
FEM	-36	54	0	0
Balance		-24	-30	
C.O.	-12			
Final moment	-48	+30	-30	0

$\therefore \quad$ Magnitude of moment at fixed support $A=48 \mathrm{kNm}$
17. (c)

Given:

$$
\theta_{A}=3 \theta_{B}
$$

$\therefore \quad \frac{M_{A B}}{M_{B A}}=\frac{2 \theta_{A}+\theta_{B}}{2 \theta_{B}+\theta_{A}} \quad$ [From slope-deflection equation]
$\Rightarrow \quad \frac{M_{A B}}{M_{B A}}=\frac{7}{5}$
18. (d)

Sway moment in column $A B$,

$$
M_{A B}=\frac{6 E I \Delta}{3^{2}}=\frac{6 E I \Delta}{9}=\frac{2}{3} E I \Delta
$$

Sway moment in column $C D$,

$$
\begin{aligned}
M_{C D} & =\frac{6 E(2 I) \Delta}{4^{2}}=\frac{12 E I \Delta}{16} \\
& =\frac{3 E I \Delta}{4} \\
\therefore \quad \frac{M_{A B}}{M_{C D}} & =\frac{\frac{2}{3} E I \Delta}{\frac{3}{4} E I \Delta}=\frac{8}{9}
\end{aligned}
$$

19. (c)

Applying the method of joints consider joint A,

$$
\begin{array}{rlrl}
& & \Sigma F_{y} & =0 \\
\Rightarrow & F_{A D} \sin \theta & =-10 \\
\Rightarrow & F_{A D} & =\frac{-10}{\sin \theta} \\
\Rightarrow & F_{A D} & =-\frac{50}{3} \mathrm{kN}=\frac{50}{3} \mathrm{kN}(\mathrm{C}) \\
\Rightarrow & \Sigma F_{x} & =0 \\
\Rightarrow & F_{A D} \cos \theta & =F_{A B} \\
\Rightarrow & F_{A B} & =\frac{50}{3} \times \frac{4}{5}=\frac{40}{3}(T)
\end{array}
$$

\therefore Now consider joint B

$\begin{array}{ll}\therefore & \text { Take } \\ \Rightarrow & \\ & \\ \Rightarrow & F_{A B}=0 \\ & \\ & F_{B C}=\frac{40}{3} \mathrm{kN}(\mathrm{T})\end{array}$
So, correct option is (c).
20. (b)

$$
\begin{aligned}
& \frac{12 E I \delta}{l^{3}}+\frac{12 E I \delta}{l^{3}}=100 \\
& \Rightarrow \quad \frac{24 E I \delta}{l^{3}}=100 \\
& M_{A}=\frac{6 E I \delta}{l^{2}} \\
& =\frac{100 \times l}{4}=\frac{100 \times 5}{4}=125 \mathrm{kNm}
\end{aligned}
$$

21. (c)

$$
M_{x}=\frac{w l x}{2}-\frac{w x^{2}}{2}
$$

$$
\begin{aligned}
\therefore \quad \text { Strain energy } & =\int_{0}^{L} \frac{M_{x}^{2} d x}{2 E I}=\int_{0}^{L} \frac{\left(\frac{w l x}{2}-\frac{w x^{2}}{2}\right)^{2} d x}{2 E I} \\
& =\frac{w^{2} l^{5}}{240 E I}
\end{aligned}
$$

22. (b)

Using slope deflection method
Equilibrium equation at joint B is:

$$
\begin{array}{rlrl}
M_{B A}+M_{B C} & =10 \times 3+12 \times 3 \times 1.5 \\
\Rightarrow \quad & \frac{2 E I}{4}\left(2 \theta_{B}\right)+\frac{2 E I}{4}\left(2 \theta_{B}\right) & =84 \\
\Rightarrow \quad \theta_{B} & =\frac{42}{E I}
\end{array}
$$

23. (c)

Load	Average load on $A C\left(y_{1}\right) \mathbf{k N}$	Average load on $C B\left(y_{2}\right) \mathbf{k N}$	Remark
All load on span $A C$	$\frac{75+105+165+120}{8}=58.125$	$\frac{0}{17}=0$	$y_{1}>y_{2}$
120 kN load crosses C	$\frac{75+105+165}{8}=43.125$	$\frac{120}{17}=7.06$	$y_{1}>y_{2}$
165 kN load crosses C	$\frac{75+105}{8}=22.5$	$\frac{165+120}{17}=16.76$	$y_{1}>y_{2}$
105 kN load crosses C	$\frac{75}{8}=9.375$	$\frac{105+165+120}{17}=22.94$	$y_{2}>y_{1}$

So, 105 kN load should be placed at the section.
24. (c)

ILD for BM at 'B'

By similar triangles $F B C$ and GDC

$$
=\frac{\left(\frac{p q}{p+q}\right)}{q}=\frac{x}{r}
$$

$$
x=\frac{p r}{p+q}
$$

$\therefore \quad$ Ratio of ordinates $=\frac{p q}{p+q} \times \frac{p+q}{p r}=\frac{q}{r}$
25. (c)

Consider joint A

$\Sigma F_{x}=0$

$$
\begin{align*}
F_{A E} \cos \theta-F_{B A} & =0 \\
F_{B A} & =\frac{F_{A E}}{\sqrt{2}} \tag{i}
\end{align*}
$$

$\Sigma F_{y}=0$

$$
\begin{aligned}
F_{A E} \sin 45^{\circ}-20 & =0 \\
F_{A E} & =20 \sqrt{2} \mathrm{kN}(\text { Tension })
\end{aligned}
$$

Substitute the value of $F_{A E}$ in eq. (i)

$$
\begin{aligned}
F_{B A} & =\frac{20 \sqrt{2}}{\sqrt{2}}=20 \mathrm{kN}(\text { Comp. }) \\
\text { Required ratio } & =\frac{F_{B A}}{F_{A E}}=\frac{20}{20 \sqrt{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Hence option (c) is correct.
26. (b)

From $\Delta O L_{1} U_{1}$ and $\Delta O L_{4} U_{4}$

$$
\begin{aligned}
\frac{O L_{1}}{O L_{4}} & =\frac{6}{12} \\
\frac{O L_{1}}{O L_{1}+24} & =\frac{6}{12} \\
\Rightarrow \quad O L_{1} & =24 \mathrm{~m}
\end{aligned}
$$

Now, Case I : Consider the load is between $L_{1} L_{2}$
$\Sigma M_{L 1}=0 \quad V_{L 7}=\frac{x}{48}$
Consider structure to the right of section (a)-(a)
$\Sigma M_{O}=0$

$$
\begin{aligned}
F_{U_{2} L_{2}} \times(24+8) & =V_{L_{7}} \times(24+48) \\
F_{U_{2} L_{2}} & =\frac{x}{48} \times \frac{72}{(32)}
\end{aligned}
$$

At $x=8 \mathrm{~m}$, i.e. at L_{2}

$$
F_{U_{2} L_{2}}=\frac{8 \times 72}{48 \times 32}=0.375 \mathrm{kN} \text { (Tensile) }
$$

Now, Case II: Consider the load is between $L_{2} L_{7}$

$$
V_{L_{1}}=\left(1-\frac{x}{48}\right)
$$

Consider structure to the left of section (a)-(a)
$\sum M_{0}=0$

$$
\begin{aligned}
V_{L_{1}} \times 24 & =F_{U_{2} L_{2}} \times 32 \\
F_{U_{2} L_{2}} & =0.75 V_{L_{1}} \\
& =0.75\left(1-\frac{x}{48}\right)
\end{aligned}
$$

At L_{3} i.e. $x=16$,

$$
F_{U_{2} L_{2}}=0.5 \mathrm{kN} \text { (Compressive) }
$$

27. (a)

For the given frame, let stiffness matrix be:

$$
k=\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]
$$

For k_{11} and k_{12}

$$
\begin{aligned}
R \times L & =\frac{12 E I}{L^{2}} \\
\therefore \quad k_{11} & =R=\frac{12 E I}{L^{3}} \\
k_{12} & =k_{21}=\frac{6 E I}{L^{2}}
\end{aligned}
$$

For k_{22}

$$
\begin{aligned}
k_{22} & =\frac{4 E I}{L}+\frac{3 E I}{L}=\frac{7 E I}{L} \\
\therefore \quad k & =\left[\begin{array}{cc}
\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
\frac{6 E I}{L^{2}} & \frac{7 E I}{L}
\end{array}\right]
\end{aligned}
$$

28. (b)

Applying Betti's theorem

$$
\begin{aligned}
25 \times 0.002+15 \times \frac{9}{1000} & =15 \times \theta_{A}+22 \times 0.004 \\
\Rightarrow \quad \theta_{\mathrm{A}} & =0.00647 \text { radian }
\end{aligned}
$$

29. (a)
30. (c)

ILD for shear force at the fixed end of a cantilever and SFD due to unit load at the free end are same.

