mRDE ERSU
India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

COMMUNICATIONS

ELECTRONICS ENGINEERING

Date of Test : 15/04/2023

ANSWER KEY >
1.
(d)
7.
(d)
13.
(c)
19. (d)
25. (b)
2.
(b)
8. (b)
14. (b)
20. (d)
26. (c)
3. (a)
9. (c)
15.
(d)
21. (c)
27. (c)
4. (c)
10. (d)
16. (c)
22. (b)
28. (b)
5.
(d)
11. (c)
17. (c)
23. (b)
29. (c)
6.
(d)
12. (c)
18. (b)
24. (c)
30. (d)

Detailed Explanations

1. (d)

The maximum and minimum values of the envelope of an AM modulated signal can be given as,

Given that,

$$
\begin{aligned}
E_{\max } & =A_{c}(1+\mu) \\
E_{\min } & =A_{c}(1-\mu) \\
A_{c} & =10 \mathrm{~V} \text { and } \mu=0.4 \\
E_{\max } & =10(1+0.4) \mathrm{V}=14 \mathrm{~V} \\
E_{\min } & =10(1-0.4) \mathrm{V}=6 \mathrm{~V}
\end{aligned}
$$

So,
2. (b)

The deviation ratio, $\quad D=\frac{\Delta f}{f_{m(\max)}}$
Maximum frequency deviation,

$$
\text { Given that, } \begin{aligned}
\Delta f & =k_{f}|m(t)|_{\max } \\
m(t) & =\operatorname{sinc}(1000 t) \mathrm{V} \\
k_{f} & =1 \mathrm{kHz} / \mathrm{V} \\
f_{m(\max)} & =\frac{1000}{2}=500 \mathrm{~Hz} \\
|m(t)|_{\max } & =1
\end{aligned}
$$

So,

$$
D=\frac{1(1000)}{500}=2
$$

3. (a)

$$
\begin{aligned}
& (\mathrm{BW})_{\mathrm{FM}}=\left(1+\frac{\Delta f}{f_{m}}\right)\left(2 f_{m}\right)=\left(1+\frac{A_{m} k_{f}}{f_{m}}\right)\left(2 f_{m}\right) \\
& (\mathrm{BW})_{\mathrm{PM}}=\left(1+A_{m} k_{p}\right)\left(2 f_{m}\right)
\end{aligned}
$$

When only f_{m} is increased, $(\mathrm{BW})_{\mathrm{PM}}$ will be increased by higher factor than that of $(\mathrm{BW})_{\mathrm{FM}}$.
4. (c)

Spectrum of the DSB-SC signal,

Spectrum of the final AM signal,

So, the bandwidth of the resultant AM signal is 30 kHz .
5. (d)

The variance of a random variable " X " can be given as,

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left[X^{2}\right]-(E[X])^{2} \\
E[X] & =\sum_{i=0}^{1} x_{i} P\left(x_{i}\right)=1(p)+0(q)=p \\
E\left[X^{2}\right] & =\sum_{i=0}^{1} x_{i}^{2} P\left(x_{i}\right)=(1)^{2}(p)+(0)^{2}(q)=p
\end{aligned}
$$

So the variance,

$$
\sigma_{X}^{2}=p-(p)^{2}=p(1-p)=p q
$$

$$
\because p+q=1
$$

Hence, option (d) is correct.
6. (d)

For a real WSS process $X(t)$, the power spectral density $S_{X}(f)$ should be an even function of " f ".
i.e.,

$$
S_{X}(f)=S_{X}(-f)
$$

Only the PSD given in option (d) satisfied the above condition.
7. (d)

For a BSC, the variation of C with α can be plotted as,

The plot of C versus α is symmetric about $\alpha=0.50$. Hence, $C=C_{1}$ for both $\alpha=0.25$ and $\alpha=0.75$. So, the correct relation between C_{1} and C_{2} is $C_{2}<C_{1}$.
8. (b)

The average probability of error can be given as,

$$
\begin{aligned}
P_{e} & =P\left(r_{0} \mid m_{1}\right) P\left(m_{1}\right)+P\left(r_{1} \mid m_{0}\right) P\left(m_{0}\right) \\
& =(0.2)(0.5)+(0.2)(0.5) \\
& =0.2
\end{aligned}
$$

9. (c)

The condition to detect upto ' e_{d} ' bit errors and simultaneously correct upto ' e_{c} ' bit errors is,

$$
\begin{aligned}
& d_{\min } \geq\left(e_{d}+e_{c}+1\right) \\
& d_{\min }=4
\end{aligned}
$$

For the given LBC, $d_{\text {min }}=4$
So,

$$
\begin{aligned}
e_{d}+e_{c}+1 & \leq 4 \\
e_{d}+e_{c} & \leq 3
\end{aligned}
$$

Only option (c) satisfies the above condition.
10. (d)

Total bandwidth, $\quad B_{t}=25 \mathrm{MHz}$
Bandwidth of each radio channel, $B_{c}=200 \mathrm{kHz}$
Number of time slots for each radio channel, $m=8$

Total number of radio channels possible $=\frac{25 \times 1000}{200}=125$
Maximum number of simultaneous users $=125 \times 8=1000$
11. (c)

The angle of the modulated signal $s(t)$ can be given as,

$$
\theta(t)=2 \pi f_{c} t+4 \sin (3000 \pi t)+3 \cos (3000 \pi t)
$$

The instantaneous frequency of the modulated signal can be given as,

$$
\begin{aligned}
f_{i} & =\frac{1}{2 \pi} \frac{d \theta(t)}{d t} \\
& =f_{c}+\frac{1}{2 \pi}[12000 \pi \cos (3000 \pi t)-9000 \pi \sin (3000 \pi t)] \\
& =f_{c}+[6000 \cos (3000 \pi t)-4500 \sin (3000 \pi t)] \mathrm{Hz} \\
& =f_{c}+1500[4 \cos (3000 \pi t)-3 \sin (3000 \pi t)] \mathrm{Hz} \\
& =f_{c}+1500[5 \cos (3000 \pi t+\alpha)] \mathrm{Hz} ; \quad \text { Where, } \alpha=\tan ^{-1}\left(\frac{3}{4}\right) \\
f_{i} & =f_{c}+7500 \cos (3000 \pi t+\alpha) \mathrm{Hz} \quad
\end{aligned}
$$

Maximum frequency deviation of the signal $s(t)$ is,

$$
(\Delta f)_{\max }=7500 \mathrm{~Hz}=7.5 \mathrm{kHz}
$$

12. (c)

The required condition is,

$$
R C \leq \frac{1}{\omega_{m}}\left(\frac{\sqrt{1-\mu^{2}}}{\mu}\right)=\frac{1}{\omega_{m}} \sqrt{\frac{1}{\mu^{2}}-1}
$$

From the given AM wave equation,

$$
\begin{aligned}
\omega_{m} & =2000 \pi \\
\mu & =0.50
\end{aligned}
$$

So,

$$
\begin{aligned}
& \mathrm{RC} \leq \frac{1}{2000 \pi} \sqrt{\left(\frac{1}{0.5}\right)^{2}-1}=\frac{\sqrt{3}}{2000 \pi} \mathrm{sec} \\
& \mathrm{RC} \leq 275.66 \mu \mathrm{sec}
\end{aligned}
$$

13. (c)

$$
\begin{aligned}
x(t) & =s(t) A \cos \left(\omega_{c} t+30^{\circ}\right) \\
& =A^{2}\left[\cos \left(\omega_{c} t+30^{\circ}\right) \cos \left(\omega_{c} t\right)\right] m(t)=\frac{A^{2}}{2}\left[\cos \left(2 \omega_{c} t+30^{\circ}\right)+\cos 30^{\circ}\right] m(t)
\end{aligned}
$$

After passing through LPF, we get,

$$
y(t)=\frac{A^{2}}{2} \cos \left(30^{\circ}\right) m(t)=\frac{\sqrt{3} A^{2}}{4} m(t)
$$

Average power of $y(t)$,

$$
P_{y}=\left(\frac{\sqrt{3}}{4} A^{2}\right)^{2} P_{m}=\frac{3 A^{4}}{16} P_{m}
$$

14. (b)

$$
M(f)=10^{-3} \operatorname{rect}\left(\frac{f}{2000}\right)
$$

So,

$$
\begin{aligned}
f_{m(\max)} & =1000 \mathrm{~Hz}=1 \mathrm{kHz} \\
m(t) & =2 \operatorname{sinc}(2000 t) \mathrm{V}
\end{aligned}
$$

So, $\quad|m(t)|_{(\max)}=2 \mathrm{~V}$
Maximum frequency deviation,

$$
\Delta f=k_{f}|m(t)|_{\max }=(10 \mathrm{kHz} / \mathrm{V}) \times 2 \mathrm{~V}=20 \mathrm{kHz}
$$

Deviation ratio,

$$
D=\frac{\Delta f}{f_{m(\max)}}=\frac{20}{1}=20
$$

Bandwidth,

$$
\begin{aligned}
\mathrm{BW} & =(1+D) 2 f_{m(\max)} \\
& =(1+20)(2)(1) \mathrm{kHz} \\
& =42 \mathrm{kHz}
\end{aligned}
$$

15. (d)

For a differentiator, $H(s)=s$

$$
\begin{aligned}
H(j \omega) & =j \omega \\
|H(j \omega)|^{2} & =\omega^{2}
\end{aligned}
$$

PSD of $Y(t)$,

$$
\begin{aligned}
S_{Y}(\omega) & =S_{X}(\omega)|H(\omega)|^{2}=\omega^{2} S_{X}(\omega) \\
& R_{X}(\tau) \stackrel{C T F T}{\longleftrightarrow} S_{X}(\omega) \\
& \frac{d R_{X}(\tau)}{d \tau} \stackrel{C T F T}{\longleftrightarrow}(j \omega) S_{X}(\omega) \\
& \frac{d^{2} R_{X}(\tau)}{d \tau^{2}} \stackrel{C T F T}{\longleftrightarrow}(j \omega)^{2} S_{X}(\omega)=-\omega^{2} S_{X}(\omega) \\
& -\frac{d^{2} R_{X}(\tau)}{d \tau^{2}} \stackrel{C T F T}{\longleftrightarrow} \omega^{2} S_{X}(\omega)=S_{Y}(\omega)
\end{aligned}
$$

So, $\quad R_{Y}(\tau)=-\frac{d^{2} R_{X}(\tau)}{d \tau^{2}}$
16. (c)

$$
\begin{aligned}
Y & =a X+b \\
x & =\frac{y-b}{a} \\
\frac{d y}{d x} & =a
\end{aligned}
$$

So, $\quad f_{Y}(y)=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right)$
Differential entropy of Y,

$$
\begin{aligned}
H(Y) & =-\int_{-\infty}^{\infty} f_{Y}(y) \log _{2} f_{Y}(y) d y \\
& =-\int_{-\infty}^{\infty} \frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) \log _{2}\left[\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right)\right] d y
\end{aligned}
$$

Let,

$$
\frac{y-b}{a}=u \Rightarrow d y=a d u
$$

So,

$$
\begin{aligned}
H(Y) & =-\int_{-\infty}^{\infty} f_{X}(u) \log _{2}\left[\frac{1}{a} f_{X}(u)\right] d u \\
& =-\int_{-\infty}^{\infty} f_{X}(u) \log _{2} f_{X}(u) d u+\int_{-\infty}^{\infty} f_{X}(u) \log _{2}(a) d u \\
& =H(X)+\log _{2}(a) \int_{-\infty}^{\infty} f_{X}(x) d x \\
H(Y) & =H(X)+\log _{2}(a)
\end{aligned}
$$

17. (c)

The impulse response of the filter matched to the signal $s(t)$ can be given as,

$$
h(t)=s(T-t) ; \quad \text { Where, } T=\text { duration of the signal }
$$

For the given signal $s(t), T=3 \mathrm{sec}$.
The signal $h(t)$ can be obtained by doing following operations to the signal $s(t)$.

18. (b)

Number of voice signals, $N=4$
Maximum frequency of each signal, $f_{m(\max)}=4 \mathrm{kHz}$
Bits per sample, $\quad n=8$

Sampling rate of each voice signal, $f_{s}=2 f_{m(\max)}=8 \mathrm{kHz}$
Sampling rate of the multiplexed signal, $f_{s(\text { overall })}=N f_{s}=32 \mathrm{kHz}$
Overall transmission rate, $R_{b}=n f_{s(\text { overall })}=256 \mathrm{kbps}$
Theoretical minimum channel bandwidth required is,

$$
(\mathrm{BW})_{\min }=\frac{R_{b}}{2}=128 \mathrm{kHz}
$$

19. (d)

Let the energy associated with the symbols s_{0}, s_{1}, s_{2} and s_{3} are E_{0}, E_{1}, E_{2} and E_{3} respectively.

$$
E_{i}=\left(d_{i}\right)^{2} ; \quad i=0,1,2,3
$$

From the above diagram,

So,

$$
\begin{aligned}
& d_{0}=0 \\
& d_{1}=d_{3}=\sqrt{A^{2}+A^{2}}=\sqrt{2 A^{2}} \\
& d_{2}=2 A \\
& E_{0}=0 \\
& E_{1}=E_{3}=2 A^{2} \\
& E_{2}=4 A^{2}
\end{aligned}
$$

The average symbol energy of the modulation scheme can be given as,

$$
\begin{aligned}
E_{s} & =\sum_{i=0}^{3} E_{i} P\left(s_{i}\right) ; \quad P\left(s_{i}\right)=\text { probability of occurrence of the symbol } s_{i} \\
& =0(0.3)+2 A^{2}(0.2)+4 A^{2}(0.4)+2 A^{2}(0.1) \\
& =(0.4+1.6+0.2) A^{2} \\
& =2.2 A^{2}
\end{aligned}
$$

20. (d)

For a distortion free detection, the time constant $(R C)$ of an envelope detector should satisfy the following condition:

$$
\frac{1}{f_{c}} \ll R C \ll \frac{1}{f_{m(\max)}}
$$

Given that, $f_{c}=1 \mathrm{MHz}$ and $f_{m(\max)}=5 \mathrm{kHz}$
So,
$1 \mu \mathrm{~s} \ll R C \ll 200 \mu \mathrm{~s}$
For option " a " $\Rightarrow R C=100 \times 10^{3} \times 10 \times 10^{-12}=1 \mu \mathrm{~s}$
For option " b " $\Rightarrow R C=20 \times 10^{6} \times 10 \times 10^{-12}=200 \mu \mathrm{~s}$
For option " c " $\Rightarrow R C=20 \times 10^{6} \times 20 \times 10^{-12}=400 \mu \mathrm{~s}$
For option "d" $\Rightarrow R C=1 \times 10^{6} \times 20 \times 10^{-12}=20 \mu \mathrm{~s}$
So, the values given in option " d " are best suitable.
21. (c)

The modulation efficiency of an AM signal can be given as,

$$
\% \eta=\frac{P_{\mathrm{SB}}}{P_{\text {total }}} \times 100=\frac{\mu^{2}}{2+\mu^{2}} \times 100
$$

Where,

$$
\mu=\text { modulation index }
$$

For a multi-tone modulation,

$$
\mu=\sqrt{\mu_{1}^{2}+\mu_{2}^{2}}
$$

For the given AM signal, $\mu_{1}=0.5$ and $\mu_{2}=0.4$
So,

$$
\begin{aligned}
\mu^{2} & =\mu_{1}^{2}+\mu_{2}^{2}=(0.5)^{2}+(0.4)^{2}=0.41 \\
\% \eta & =\frac{0.41}{2+0.41} \times 100 \approx 17 \%
\end{aligned}
$$

22. (b)

$$
\begin{align*}
& \beta_{1}=\frac{\Delta f_{1}}{f_{m_{1}}}=\frac{A_{m_{1}} k_{f}}{f_{1}}=10 \mathrm{rad} \tag{i}\\
& \beta_{2}=\frac{\Delta f_{2}}{f_{m_{2}}}=\frac{A_{m_{2}} k_{f}}{f_{2}}=20 \mathrm{rad} \tag{ii}
\end{align*}
$$

From equations (i) and (ii), it is clear that,

$$
\begin{aligned}
\frac{A_{m_{2}} k_{f}}{f_{2}} & =2 \times \frac{A_{m_{1}} k_{f}}{f_{1}} \\
\frac{f_{2}}{f_{1}} & =\frac{A_{m_{2}}}{2 A_{m_{1}}}=\frac{2}{2 \times 1}=1 \\
f_{2} & =f_{1}
\end{aligned}
$$

So,
23. (b)

$$
\left.\begin{aligned}
\left(\Delta f_{\max }\right)_{\mathrm{FM}} & =A_{m} k_{f} \\
\left(\Delta f_{\max }\right)_{\mathrm{PM}} & =\frac{k_{p}}{2 \pi}
\end{aligned} \frac{d m(t)}{d t}\right|_{\max }
$$

So,

$$
\left(\Delta f_{\max }\right)_{\mathrm{PM}}=\frac{k_{p}}{2 \pi}\left(\frac{A_{m}}{2}\right)=\frac{k_{p} A_{m}}{4 \pi}
$$

If,

$$
\left(\Delta f_{\max }\right)_{\mathrm{PM}}=\left(\Delta f_{\max }\right)_{\mathrm{FM}}
$$

Then,

$$
\begin{aligned}
\frac{k_{p} A_{m}}{4 \pi} & =k_{f} A_{m} \\
\frac{k_{p}}{k_{f}} & =4 \pi \mathrm{rad} / \mathrm{Hz}
\end{aligned}
$$

24. (c)

$$
\begin{aligned}
\theta(t) & =2 \pi f_{c} t+5 \sin (3000 \pi t)+10 \sin (2000 \pi t) \\
f_{i} & =\frac{1}{2 \pi} \frac{d \theta(t)}{d t}=f_{c}+7500 \cos (3000 \pi t)+10000 \cos (2000 \pi t)
\end{aligned}
$$

So,

$$
\begin{aligned}
\Delta f & =7500+10000=17.5 \mathrm{kHz} \\
f_{m(\max)} & =1500 \mathrm{~Hz}=1.5 \mathrm{kHz}
\end{aligned}
$$

Deviation ratio, $\quad D=\frac{\Delta f}{f_{m(\max)}}=\frac{17.5}{1.5}=\frac{35}{3}$
Bandwidth,

$$
\mathrm{BW}=(1+D) 2 f_{m(\max)}=\left(1+\frac{35}{3}\right)(3) \mathrm{kHz}=38 \mathrm{kHz}
$$

25. (b)

Given that, $\quad f_{\text {LO }}>f_{c}$
So,

$$
f_{L O}=f_{c}+f_{\mathrm{IF}}
$$

$$
f_{L O(\max)}=f_{c(\max)}+f_{\mathrm{IF}}=1650+450=2100 \mathrm{kHz}
$$

$$
f_{L O(\text { min })}=f_{c(\min)}+f_{\mathrm{IF}}=550+450=1000 \mathrm{kHz}
$$

For an LC oscillator, $f_{0}=\frac{1}{\sqrt{L C}}$

$$
\begin{aligned}
C & \propto \frac{1}{f_{0}^{2}} \\
\frac{C_{\max }}{C_{\min }} & =\left(\frac{f_{L O(\max)}}{f_{L O(\text { min })}}\right)^{2}=\left(\frac{2100}{1000}\right)^{2}=4.41
\end{aligned}
$$

26. (c)

$$
\begin{aligned}
E[X(t)] & =5 \\
E[Y(t)] & =H(0) E[X(t)] \\
H(0) & =\left.H(s)\right|_{s=0} \\
H(s) & =\text { Transfer function of the given circuit }
\end{aligned}
$$

From the given circuit,

$$
H(0)=\frac{4 \mathrm{M} \Omega}{4 \mathrm{M} \Omega+1 \mathrm{M} \Omega}=\frac{4}{5}=0.80
$$

So,

$$
[Y(t)]=0.80 \times 5=4
$$

27. (c)

Minimum signal-to-noise ratio that has to be maintained in the channel is,

$$
\begin{aligned}
\mathrm{SNR} & =\frac{S}{N_{0} B}=\frac{S}{\left(\frac{N_{0}}{2}\right)(2 B)} \\
& =\frac{100 \times 10^{-6}}{\left(10^{-10}\right)\left(2 \times 4 \times 10^{3}\right)}=125
\end{aligned}
$$

The capacity of the channel can be given by,

$$
\begin{aligned}
C & =B \log _{2}(1+\mathrm{SNR}) \\
& =4 \log _{2}(1+125) \simeq 27.91 \mathrm{kbps}
\end{aligned}
$$

28. (b)

Signal power,

$$
\begin{aligned}
S & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=2 \int_{0}^{2} x^{2}\left(\frac{2-x}{4}\right) d x \\
& =\frac{1}{2} \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x=\frac{1}{2}\left[\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}=\frac{1}{2}\left[\frac{16}{3}-\frac{16}{4}\right]=\frac{2}{3}
\end{aligned}
$$

Quantization noise power, $N_{Q}=\frac{\Delta^{2}}{12}$

$$
\begin{aligned}
& \qquad \begin{aligned}
\Delta & =\frac{2-(-2)}{64}=\frac{1}{16} \\
\text { So, } & =\frac{(1 / 16)^{2}}{12}=\frac{1}{3072} \\
N_{Q} & =\frac{S}{N_{Q}}=\frac{(2 / 3)}{(1 / 3072)}=\frac{2 \times 3072}{3}=2048 \\
\text { In decilogs, } \quad[S Q N R] & =10 \log _{10}(S Q N R)=33.11 \mathrm{~dB}
\end{aligned}
\end{aligned}
$$

29. (c)

It is given that the carrier phase for first two encoded bits are $\pi, 0$. So first two encoded bits are $0,1$.
The logic diagram of DPSK encoder can be given as,

Finding the logic gate:

If we observe clearly,

$$
\begin{aligned}
d_{0}(\operatorname{logic}) b_{1} & =d_{1} \\
0(\operatorname{logic}) 0 & =1
\end{aligned}
$$

So, the possible logic is , EX- NOR.
So, the complete encoding can be given as,

So, the carrier phases corresponding to the remaining three bits are $0,0, \pi$.
30. (d)

The given periodic signal $s(t)$ has odd-symmetry. So, the Fourier series representation of $s(t)$ has,

$$
\begin{aligned}
& a_{0}=0 \\
& a_{n}=0 \\
& b_{n}=\frac{2}{T}\left[\int_{-T / 2}^{0}(-1) \sin \left(n \omega_{0} t\right) d t+\int_{0}^{T / 2} \sin \left(n \omega_{0} t\right) d t\right]
\end{aligned}
$$

Where, $\omega_{0}=\frac{2 \pi}{T}$

So,

$$
\begin{aligned}
b_{n} & =\frac{2}{T}\left[\left(\frac{\cos \left(n \omega_{0} t\right)}{n \omega_{0}}\right)_{-T / 2}^{0}-\left(\frac{\cos \left(n \omega_{0} t\right)}{n \omega_{0}}\right)_{0}^{T / 2}\right] \\
& =\frac{2}{n \omega_{0} T}\left[1-\cos \left(\frac{n \omega_{0} T}{2}\right)-\cos \left(\frac{n \omega_{0} T}{2}\right)+1\right] \\
& =\frac{4}{n(2 \pi)}[1-\cos (n \pi)]=\frac{2}{n \pi}\left[1-(-1)^{n}\right] \\
b_{n} & = \begin{cases}\frac{4}{n \pi} ; & n \text { is odd } \\
0 ; & n \text { is even }\end{cases}
\end{aligned}
$$

So, $x(t)$ can be represented as,

$$
\begin{aligned}
x(t) & =s(t) m(t) \\
& =\left[\frac{4}{\pi} \sin \left(\frac{2 \pi}{T} t\right)+\frac{4}{3 \pi} \sin \left(\frac{6 \pi}{T} t\right)+\frac{4}{5 \pi} \sin \left(\frac{10 \pi}{T} t\right)+\ldots .\right] m(t)
\end{aligned}
$$

After passing through BPF, we get,

$$
\text { So, } \begin{aligned}
y(t) & =\frac{4}{\pi} \sin \left(\frac{2 \pi}{T} t\right) m(t)=A_{c} m(t) \sin \left(\frac{2 \pi}{T} t\right) \\
A_{c} & =\frac{4}{\pi}
\end{aligned}
$$

