

MPDEE ERSG:

DETAILED EXPLANATIONS

1. (c)
2. (c)

Extent of irreversibility of any process is determined by the entropy increase of the universe.
3. (b)
$\int P d V$ work is only valid for a Quasi-static process.
4. (d)

$$
\begin{equation*}
\frac{W}{Q_{1}}=\eta_{\text {engine }}=0.3 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{Q_{2}}{W}=\mathrm{COP}_{\mathrm{ref}}=5 \tag{2}
\end{equation*}
$$

Multiplying equation (1) and (2)

$$
\begin{array}{ll}
\Rightarrow & \frac{Q_{2}}{Q_{1}}=0.3 \times 5=1.5 \\
\Rightarrow & Q_{1}=\frac{Q_{2}}{1.5}=\frac{1000}{1.5} \mathrm{~kJ}=666.67 \mathrm{~kJ}
\end{array} \quad\left(\text { for } Q_{2}=1 \mathrm{MJ}=1000 \mathrm{~kJ}\right)
$$

5. (a)
6. (d)

The mixture of air and liquid air is not a pure substance, because the relative proportions of oxygen and nitrogen differ in gas and liquid phases in equilibrium.
7. (a)

$$
\mathrm{DOF}=0
$$

Gibbs phase rule fails at critical point.
8. (a)
9. (a)

If temperature is constant, U will remain unchanged as internal energy for an ideal gas is the function of temperature only.
10. (b)

Given: $P_{C}=20 \mathrm{kPa} ; V_{C}=0.002 \mathrm{~m}^{3} ; T_{C}=300 \mathrm{~K}$
We know,

$$
R=\frac{8 P_{C} V_{C}}{3 T_{C}}=\frac{8 \times 20 \times 1000 \times 0.002}{3 \times 300}=0.355 \mathrm{~J} / \mathrm{K}
$$

11. (a)

Given; $\quad P=200 \mathrm{kN} / \mathrm{m}^{2} ; \quad W_{1}=-150 \mathrm{~kJ} ; \quad Q=50 \mathrm{~kJ}$
We know,

$$
\begin{aligned}
H & =U+P V \\
H_{1} & =U_{1}+P_{1} V_{1} \\
H_{2} & =U_{2}+P_{2} V_{2}
\end{aligned}
$$

$\therefore \quad$ Change in enthalpy $\Delta H=H_{2}-H_{1}=\left(U_{2}-U_{1}\right)+P\left(V_{2}-V_{1}\right)$
Work done by the system,

$$
W_{2}=P\left(V_{2}-V_{1}\right)=200 \times(5-2)=600 \mathrm{~kJ}
$$

From 1st law of thermodynamics,

$$
\begin{array}{ll}
\Delta Q=\Delta U+\Delta W \\
\text { So, } & \begin{array}{l}
\Delta U=\Delta Q-\Delta W=50-(-150+600)=50-450=-400 \mathrm{~kJ} \\
\therefore
\end{array} \\
\Delta H=\Delta U+P\left(V_{2}-V_{1}\right) \\
\Delta H=-400+200(5-2)=-400+600=200 \mathrm{~kJ}
\end{array}
$$

12. (c)

$$
\begin{aligned}
c_{p} & =1 \mathrm{~kJ} / \mathrm{kgK} \\
c_{v} & =0.75 \mathrm{~kJ} / \mathrm{kgK} \\
T & =27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K} \\
p & =1 \mathrm{bar}=100 \mathrm{kPa} \\
R & =c_{p}-c_{v} \\
=1 & -0.75=0.25 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

Gas constant: $\quad R=c_{p}-c_{v}$
Applying equation of state in terms of density,

$$
\begin{aligned}
p & =\rho R T \\
100 & =\rho \times 0.25 \times 300 \\
1 & =0.75 \rho \\
\rho & =\frac{1}{0.75}=\frac{100}{75}=1.33 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

or
13. (b)

For the process 3-4

$$
\begin{aligned}
\Delta U & =-650(\mathrm{~kJ}) \\
\Delta P E & =0(\mathrm{~kJ}) \\
\Delta E & =-600(\mathrm{~kJ})
\end{aligned}
$$

Change in total macroscopic energy (ΔE)

$$
\begin{aligned}
\Delta E & =\Delta U+\Delta K E+\Delta P E \\
-600 & =-650+\Delta P E+0 \\
\Delta K E & =(650-600)=50 \mathrm{~kJ}
\end{aligned}
$$

14. (c)

From steady flow energy equation (SFEE), neglecting $\triangle K E$ and $\triangle P E$

$$
\begin{aligned}
\dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}-\dot{Q} & =\left(\dot{m}_{1}+\dot{m}_{2}\right) h_{3}-\mathscr{W}_{n e t}^{0} \\
\dot{m}_{1} c_{p} T_{1}+\dot{m}_{2} c_{p} T_{2}-\dot{Q} & =\left(\dot{m}_{1}+\dot{m}_{2}\right) c_{p} T_{3} \\
T_{3} & =\frac{\dot{m}_{1} T_{1}+\dot{m}_{2} T_{2}}{\dot{m}_{1}+\dot{m}_{2}}-\frac{\dot{Q}}{c_{p}\left(\dot{m}_{1}+\dot{m}_{2}\right)}
\end{aligned}
$$

15. (c)

In case of throttling of real gas,

$$
\begin{aligned}
h_{1} & =h_{2} \\
u_{1}+p_{1} v_{1} & =u_{2}+p_{2} v_{2}
\end{aligned}
$$

Internal energy + Flow energy $=$ Constant
Thus, the final outcome of a throttling process will depend on the quantity that increases during the process.
If the flow energy increases $\left(p_{2} v_{2}>p_{1} v_{1}\right)$, it can do so at the expense of the internal energy. As a result, internal energy decreases, which is usually accompanied by a drop in temperature. If the product pv decreases, the internal energy and the temperature of a fluid will increase during throttling process.
16. (a)

$$
\begin{aligned}
\text { Mass } & =1 \mathrm{~kg} \text { of ideal gas } \\
\text { Initial, } P_{1} & =100 \mathrm{kPa} \\
T_{1} & =250 \mathrm{~K} \\
\text { Final, } T_{2} & =500 \mathrm{~K} \\
R & =287 \mathrm{~J} / \mathrm{kgK} \\
\gamma & =1.4 \\
W_{1-2} & =-\left(\frac{P_{2} V_{2}-P_{1} V_{1}}{n-1}\right) \\
& =\frac{-m R\left(T_{2}-T_{1}\right)}{n-1} \\
U_{1-2} & =U_{2}-U_{1}=m c_{v}\left(T_{2}-T_{1}\right) \\
Q_{1-2} & =U_{1-2}+W_{1-2} \\
Q_{1-2} & =1 \times 0.718(500-250)-\frac{1 \times 0.287(500-250)}{1.3-1}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1-2}=-59.666 \mathrm{~kJ} \\
& Q_{1-2}=59.666 \mathrm{~kJ} \text { (Heat transfer from piston cylinder to its surrounding) }
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
Q_{1-2} & =\frac{\gamma-n}{\gamma-1} \times\left(\frac{P_{1} V_{1}-P_{2} V_{2}}{n-1}\right)=\frac{\gamma-n}{\gamma-1} \times \frac{m \times R \times\left(T_{1}-T_{2}\right)}{n-1} \\
& =\frac{1.4-1.3}{1.4-1} \times \frac{1 \times 0.287 \times(250-500)}{1.3-1} \\
Q_{1-2} & =-59.666 \mathrm{~kJ} \\
Q_{1-2} & =59.666 \mathrm{~kJ} \text { (Heat transfer from piston cylinder to its surrounding) }
\end{aligned}
$$

17. (c)
$\dot{m}_{1}=2 \mathrm{~kg} / \mathrm{s}$,
$P_{1}=100 \mathrm{kPa}$,
$T_{1}=273+30=303 \mathrm{~K} ;$ $V_{1}=200 \mathrm{~m} / \mathrm{s}$

From steady flow energy equation,

$$
\begin{aligned}
& h_{1}+\frac{V_{1}^{2}}{2}+Q=h_{2}+\frac{V_{2}^{2}}{2}+W_{n e t}^{0} \\
& {\left[1005(303-318)+\frac{200^{2}}{2}\right]-4000=\frac{V_{2}^{2}}{2} } \\
& V_{2}=43.0116 \mathrm{~m} / \mathrm{s} \\
& \text { Mass flow rate }=\rho_{2} A_{2} V_{2} \\
& 2=\rho_{2} \times 400 \times 10^{-4} \times 43.0116 \\
& \rho_{2}=1.1624 \mathrm{~kg} / \mathrm{m}^{3} \\
& P_{2}=\rho_{2} R T_{2} \\
&=1.1624 \times 0.287 \times 318=106.094 \mathrm{kPa}
\end{aligned}
$$

18. (d)

Taking chamber A and chamber B together as a system.

$$
\begin{aligned}
& d Q=d U+d W \\
& d Q=d W=0
\end{aligned}
$$

Since

$$
\Rightarrow \quad d U=0
$$

No change in internal energy \Rightarrow No change in temperature of air.

$$
\begin{array}{rlrl}
& & \text { Ideal gas equation, } T & =\text { Constant } \\
\Rightarrow & P_{1} V_{1} & =P_{2} V_{2} \\
\Rightarrow & P_{2} & =\frac{P_{1} V_{1}}{V_{2}}=(1000) \times \frac{2}{4}=500 \mathrm{kPa}
\end{array}
$$

19. (a)

$$
\begin{aligned}
T_{H} & =727+273=1000 \mathrm{~K} \\
T_{L} & =27+273=300 \mathrm{~K}
\end{aligned}
$$

The maximum possible efficiency of a heat engine operating between two thermal reservoir,

$$
\eta=1-\frac{T_{L}}{T_{H}}=1-\frac{300}{1000}=0.7
$$

Efficiency claimed by the inventor $\eta_{\text {claim }}=\frac{W}{Q_{1}}=\frac{0.6}{1}=0.6$
So, claimed efficiency (0.6) is less than the maximum possible efficiency (0.7) and hence the claimed device is feasible as a heat engine.
20. (c)

Mixture of gas,

$$
\begin{aligned}
& \text { Oxygen }\left(\mathrm{O}_{2}\right)=0.1 \mathrm{kmol} \\
& \text { Nitrogen }\left(\mathrm{N}_{2}\right)=0.1 \mathrm{kmol} \\
& \text { Methane }\left(\mathrm{CH}_{4}\right)=0.8 \mathrm{kmol} \\
& \mathrm{O}_{2}=32 \mathrm{~kg} / \mathrm{kmol} \\
& \mathrm{~N}_{2}=28 \mathrm{~kg} / \mathrm{kmol} \\
& \mathrm{CH}_{4}=16 \mathrm{~kg} / \mathrm{kmol} \\
& \text { Molar mass, } \quad \begin{array}{l}
\text { Mass of } \mathrm{O}_{2}
\end{array}=\mathrm{Mole} \times \text { Molar mass } \\
&=0.1 \times 32=3.2 \mathrm{~kg} \\
& \text { Mass of } \mathrm{N}_{2}=\text { Mole } \times \text { Molar mass } \\
&=0.1 \times 28=2.8 \mathrm{~kg} \\
& \text { Mass of } \mathrm{CH}_{4}=\text { Mole } \times \text { Molar mass } \\
&=0.8 \times 16=12.8 \mathrm{~kg}
\end{aligned}
$$

$$
\text { Mass fraction of } N_{2}=\frac{m_{\mathrm{N}_{2}}}{m_{\mathrm{O}_{2}}+m_{\mathrm{N}_{2}}+m_{\mathrm{CH}_{4}}}=\left(\frac{2.8}{3.2+2.8+12.8}\right)=0.148
$$

21. (a)

$$
\begin{aligned}
\text { Volume of the balloon is } & =m\left[v_{f}+x v_{f g}\right] \\
& =2[0.001053+0.85(1.1594-0.001053)] \\
& =1.971 \mathrm{~m}^{3} \\
\frac{\pi}{6} D^{3} & =1.971 \\
D & =1.55 \mathrm{~m}
\end{aligned}
$$

22. (a)

Given:
$P_{1}=0.8725 \mathrm{kPa}, T_{1}=273+5=278 \mathrm{~K}, P_{2}=?, T_{2}=10+273=283 \mathrm{~K}, R=0.4615 \mathrm{~kJ} / \mathrm{kgK}, h_{f g}=2489.1 \mathrm{~kJ} / \mathrm{kg}$ From Clapeyron equation,

$$
\begin{aligned}
\left(\frac{d P}{d T}\right)_{s a t} & =\frac{P \cdot h_{f g}}{R T^{2}} \\
\left(\frac{d P}{P}\right) & =\frac{h_{f g}}{R}\left(\frac{d T}{T^{2}}\right)
\end{aligned}
$$

For small temperature internal,

$$
\begin{aligned}
\ln \left(\frac{P_{2}}{P_{1}}\right) & =\frac{h_{f g}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \left(\frac{P_{2}}{0.8725}\right) & =\frac{2489.1}{0.4615}\left(\frac{1}{278}-\frac{1}{283}\right) \\
P_{2} & =1.229 \mathrm{kPa} \approx 1.23 \mathrm{kPa}
\end{aligned}
$$

23. (d)

$$
\begin{aligned}
W_{\text {reversible form }} & =Q\left(1-\frac{T_{L}}{T_{H}}\right)=600\left(1-\frac{300}{900}\right)=400 \mathrm{~kW} \\
\text { Irreversibility } & =W_{\text {rev }}-W_{\text {actual }} \\
& =400-200=200 \mathrm{~kW}
\end{aligned}
$$

24. (a)

As given:

$$
\begin{aligned}
\eta_{\text {I }} & =\eta_{\text {II }} \\
\Rightarrow \quad T & =\sqrt{T_{H} T_{L}}=\sqrt{1300 \times 300}=624.5 \mathrm{~K}
\end{aligned}
$$

Therefore, the temperature of the intermediate reservoir

$$
\begin{aligned}
T & =624.5 \mathrm{~K} \\
\frac{Q_{2}}{Q_{1}} & =\frac{T}{T_{H}} \\
Q_{2} & =\frac{624.5 \times 100}{1300}=48.038 \mathrm{~kJ} \\
\eta_{\text {II }} & =1-\frac{300}{624.5}=51.96 \% \\
W_{\text {II }} & =\eta_{\text {II }} Q_{2}=0.5196 \times 48.038=24.96 \mathrm{~kJ}
\end{aligned}
$$

25. (c)

$$
\begin{aligned}
\text { Volume } & =1 \mathrm{~m}^{3} \\
\text { Mole of } \mathrm{CO}_{2}, n_{1} & =0.2 n
\end{aligned}
$$

Where n is total number of mole of mixture $\left(\mathrm{CO}_{2}+\mathrm{O}_{2}\right)$
Mole of $\mathrm{O}_{2^{\prime}} \mathrm{n}_{2}=0.8 n$
Initial, $P_{1}=100 \mathrm{kPa}$
Initial, $T_{1}=300 \mathrm{~K}$
Final pressure, $P_{2}=500 \mathrm{kPa}$, Temperature $=300 \mathrm{~K}$
Assume mole of N_{2} as n_{3}
From ideal gas equation,

$$
\left.\begin{array}{rl}
\frac{P V}{n \bar{R}} & =\text { Constant } \\
P V & =n \bar{R} T
\end{array} \quad[\bar{R}=\text { Universal constant }] ~\right]
$$

For isothermal process,

$$
\begin{align*}
\frac{P_{1} V_{1}}{\left(n_{1}+n_{2}\right) \bar{R}} & =\frac{P_{2} V_{2}}{\left(n_{1}+n_{2}+n_{3}\right) \bar{R}} \\
\frac{100 \times 1}{(0.2 n+0.8 n)} & =\frac{500 \times 1}{\left(0.2 n+0.8 n+n_{3}\right)} \\
100\left(n+n_{3}\right) & =500 \times n \tag{i}
\end{align*}
$$

At initial point, $\quad n=\frac{P_{1} V_{1}}{R T_{1}}=\frac{100 \times 1 \times 10^{3}}{8.3145 \times 300}=40 \mathrm{~mole}$
From (i), $\quad 100 n+100 n_{3}=500 n$

$$
n_{3}=\frac{400 \times 40}{100}=160 \mathrm{~mole}
$$

26. (a)

Insulated rigid tank,

Given: $v=0.8 \mathrm{~m}^{3}, m=1.5 \mathrm{~kg}, P_{i}=100 \mathrm{kPa}, P_{f}=135 \mathrm{kPa}, T_{o}=298 \mathrm{~K}$,
$P V=m R T$
At $V=$ Constant

$$
\begin{aligned}
P & \propto T \\
\frac{P_{i}}{P_{f}} & =\frac{T_{i}}{T_{f}} \Rightarrow \frac{T_{1}}{T_{2}}=\frac{P_{1}}{P_{2}}
\end{aligned}
$$

Exergy destroyed, $\quad \Delta X=T_{o} S_{\text {gen }}$

$$
\begin{aligned}
& \Delta X=298 \times\left[m c_{v} \ln \left(\frac{T_{f}}{T_{i}}\right)\right]=298 \times\left[1.5 \times 680 \ln \left(\frac{135}{100}\right)\right] \\
& \Delta X=91.219 \mathrm{~kJ}
\end{aligned}
$$

27. (c)

Mass balance: $\quad m_{i}-m_{e}=m_{2}-m_{1}$

$$
m_{e}=m_{1}-m_{2}
$$

Energy balance: $(\Delta E)_{\text {system }}=E_{\text {in }}-E_{\text {out }}$

$$
\begin{array}{rlr}
E_{\text {in }} & =m_{i} h_{i}+Q_{i}+W_{i}=W_{i} & \left(Q_{i}=0, m_{i} h_{i}=0\right) \\
E_{\text {out }} & =m_{e} h_{e}+Q_{e}+W_{e}=m_{e} h_{e} & \left(Q_{e}=0, W_{e}=0\right)
\end{array}
$$

$$
W_{i}-m_{e} h_{e}=m_{2} u_{2}-m_{1} u_{1}
$$

$$
W_{i}-\left(m_{1}-m_{2}\right) h_{e}=m_{2} u_{2}-m_{1} u_{1}
$$

$$
m_{1}=\frac{P_{1} V_{1}}{R T_{1}}=\frac{500 \times 1.7}{0.287 \times 323}=9.169 \mathrm{~kg}
$$

$$
m_{2}=\frac{P_{2} V_{2}}{R T_{2}}=\frac{200 \times 1.7}{0.287 \times 323}=3.667 \mathrm{~kg}
$$

$$
u_{2}=u_{1}=c_{v} T
$$

$$
W_{i}=\left(m_{1}-m_{2}\right) h_{e}+m_{2} u_{2}-m_{1} u_{1}
$$

$$
=5.502 \times 1.005 \times 323+(-5.502) \times 0.718 \times 323
$$

$$
=510.04 \mathrm{~kJ}
$$

28. (a)

Mass of air in the room,

$$
m_{\mathrm{air}}=\frac{P_{1} V}{R T_{1}}=\frac{(100) \times 3 \times 4 \times 7}{0.287 \times 295}=99.214 \mathrm{~kg}
$$

By energy balance:
Heat lost by water $=$ Heat gain by air

$$
\begin{aligned}
1000 \times 4.18 \times\left(65-T_{f}\right) & =99.21 \times 0.718\left(T_{f}-22\right) \\
58.763\left(65-T_{f}\right) & =T_{f}-22 \\
\Rightarrow \quad T_{f} & =64.28^{\circ} \mathrm{C}
\end{aligned}
$$

Now,

$$
X_{\text {destroyed }}=T_{o} S_{\text {gen }}
$$

where,

$$
S_{\text {gen }}=(\Delta S)_{\text {water }}+(\Delta S)_{\text {air }}
$$

$$
=m c_{w} \ln \left(\frac{T_{f}}{T_{w}}\right)+m_{\text {air }} \times c_{v} \times \ln \left(\frac{T_{f}}{T_{q}}\right)
$$

$$
=1000 \times 4.186 \ln \left(\frac{273+64.28}{273+65}\right)+99.214 \times 0.718 \ln \left(\frac{273+64.28}{273+22}\right)
$$

$$
=0.6147 \mathrm{~kJ} / \mathrm{K}
$$

So,

$$
X_{\text {destruction }}=283 \times 0.6147=173.98 \mathrm{~kJ}
$$

29. (d)

Given: $t=a x^{2}+b$
At $x=5 \mathrm{~cm}, t=0^{\circ}$,
$\Rightarrow \quad 0=a \times 25+b$
$\Rightarrow \quad-25 a=+b$
At $x=20 \mathrm{~cm}, t=100^{\circ}$,
$\Rightarrow \quad 100=400 a+b$
From equation (i), $\quad 100=400 a-25 a$

$$
\begin{aligned}
a & =\frac{100}{375}=\frac{4}{15} \\
\Rightarrow \quad b & =-25 \times \frac{4}{15}=-\frac{20}{3}
\end{aligned}
$$

At $x=15, t=\frac{4}{15} \times 15^{2}+\left(-\frac{20}{3}\right)=53.33^{\circ} \mathrm{C}$
30. (b)

For a rigid closed vessel; $\delta W=0$ and

$$
\begin{aligned}
v_{f}+x\left(v_{g}-v_{f}\right) & =v_{c} \\
\Rightarrow \quad 0.0010605+x(0.8857- & 0.0010605)=0.003155 \\
x & =2.367 \times 10^{-3} \\
u_{1} & =u_{f}+x u_{f g} \\
& =504.49+\left(2.367 \times 10^{-3}\right)(2529.5-504.49) \\
& =509.283 \mathrm{~kJ} / \mathrm{kg} \\
u_{2} & =u_{c}=2029.6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

From first law of thermodynamics,

$$
\begin{aligned}
\delta Q & =\delta W+d U \\
\delta Q & =0+m\left(u_{2}-u_{1}\right) \\
& =2 \times(2029.6-509.283) \\
& =3040.6 \mathrm{~kJ}
\end{aligned}
$$

