	LASS	TES	бт —			S.No.	: 01SP_	ME_ABC	D_16423
		Ind	ia's Best			PS , GATE &	PSUs		
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata									
	TH		RM					CS	
			Date	of lest	:16/0	4/2023	3		
1									
ANS	SWER KEY	>							
AN 1.	SWER KEY (c)	> 7.	(a)	13.	(b)	19.	(a)	25.	(c)
AN 1. 2.	SWER KEY (c) (c)	> 7. 8.	(a) (a)	13. 14.	(b) (c)	19. 20.	(a) (c)	25. 26.	(c) (a)
AN 1. 2. 3.	SWER KEY (c) (c) (b)	> 7. 8. 9.	(a) (a) (a)	13. 14. 15.	(b) (c) (c)	19. 20. 21.	(a) (c) (a)	25. 26. 27.	(c) (a) (c)
AN 1. 2. 3. 4.	SWER KEY (c) (c) (b) (d)	 7. 8. 9. 10. 	(a) (a) (a) (b)	13. 14. 15. 16.	(b) (c) (c) (a)	19. 20. 21. 22.	(a) (c) (a) (a)	25. 26. 27. 28.	(c) (a) (c) (a)
AN 1. 2. 3. 4. 5.	SWER KEY (c) (c) (b) (d) (a)	 7. 8. 9. 10. 11. 	(a) (a) (a) (b) (a)	13. 14. 15. 16. 17.	(b) (c) (c) (a) (c)	19. 20. 21. 22. 23.	(a) (c) (a) (a) (d)	25. 26. 27. 28. 29.	(c) (a) (c) (a) (d)

DETAILED EXPLANATIONS

- 1. (c)
- 2. (c)

Extent of irreversibility of any process is determined by the entropy increase of the universe.

3. (b)

 $\int PdV$ work is only valid for a Quasi-static process.

4. (d)

...(1)

Multiplying equation (1) and (2)

$$\Rightarrow \qquad \frac{Q_2}{Q_1} = 0.3 \times 5 = 1.5$$

$$\Rightarrow \qquad Q_1 = \frac{Q_2}{1.5} = \frac{1000}{1.5} \text{ kJ} = 666.67 \text{ kJ} \qquad (\text{for } Q_2 = 1 \text{ MJ} = 1000 \text{ kJ})$$

- 5. (a)
- 6. (d)

The mixture of air and liquid air is not a pure substance, because the relative proportions of oxygen and nitrogen differ in gas and liquid phases in equilibrium.

7. (a)

$$DOF = 0$$

Gibbs phase rule fails at critical point.

8. (a)

9. (a)

If temperature is constant, U will remain unchanged as internal energy for an ideal gas is the function of temperature only.

10.	(b)							
	Given: $P_C = 20$ kPa; $V_C = 0.002$ m ³ ; $T_C = 300$ K							
	TAT 1	$8P_{C}V_{C} = 8 \times 20 \times 1000 \times 0.002$						
	We know,	$R = \frac{1}{3T_C} = \frac{1}{3 \times 300} = 0.355 \text{ J/K}$						
11.	(a)							
	Given; $P = 200 \text{ kN/m}^2$; $W_1 = -150 \text{ kJ}$; $Q = 50 \text{ kJ}$							
	We know,	H = U + PV						
		$H_1 = U_1 + P_1 V_1$						
		$H_2 = U_2 + P_2 V_2$						
	$\therefore \text{Change in enthalpy} \Delta H = H_2 - H_1 = (U_2 - U_1) + P(V_2 - V_1)$							
	Work done by the system,							
		$W_2 = P(V_2 - V_1) = 200 \times (5 - 2) = 600 \text{ kJ}$						
	From 1st law of ther	modynamics,						
		$\Delta Q = \Delta U + \Delta W$						
		$\Delta U = \Delta Q - \Delta W = 50 - (-150 + 600) = 50 - 450 = -400 \text{ kJ}$						
	So,	$\Delta H = \Delta U + P(V_2 - V_1)$						
	. : .	$\Delta H = -400 + 200 (5 - 2) = -400 + 600 = 200 \text{ kJ}$						
12.	(c)							
		$c_n = 1 \text{ kJ/kgK}$						
		$c_v^r = 0.75 \text{ kJ/kgK}$						
		$T = 27^{\circ}C = (27 + 273) K = 300 K$						
		p = 1 bar = 100 kPa						
	Gas constant:	$R = c_p - c_v$						
		=1 - 0.75 = 0.25 kJ/kgK						
	Applying equation of state in terms of density,							
		$p = \rho R T$						
		$100 = \rho \times 0.25 \times 300$						
		$1 = 0.75 \rho$						
	or	$\rho = \frac{1}{0.75} = \frac{100}{75} = 1.33 \text{kg/m}^3$						
13.	(b)							
	For the process 3-4							
	*	$\Delta U = -650 \text{ (kJ)}$						
		$\Delta PE = 0 \text{ (kJ)}$						
		$\Delta E = -600 \text{ (kJ)}$						
	Change in total mac	Change in total macroscopic energy (ΔE)						
		$\Delta E = \Delta U + \Delta K E + \Delta P E$						
		$-600 = -650 + \Delta PE + 0$						
		$\Delta KE = (650 - 600) = 50 \text{ kJ}$						

14. (c)

From steady flow energy equation (SFEE), neglecting ΔKE and ΔPE

$$\begin{split} \dot{m}_1 h_1 + \dot{m}_2 h_2 - \dot{Q} &= (\dot{m}_1 + \dot{m}_2) h_3 - \mathcal{W}_{net}^{0} \\ \dot{m}_1 c_p T_1 + \dot{m}_2 c_p T_2 - \dot{Q} &= (\dot{m}_1 + \dot{m}_2) c_p T_3 \\ T_3 &= \frac{\dot{m}_1 T_1 + \dot{m}_2 T_2}{\dot{m}_1 + \dot{m}_2} - \frac{\dot{Q}}{c_p (\dot{m}_1 + \dot{m}_2)} \end{split}$$

15. (c)

In case of throttling of real gas,

$$\begin{array}{rcl} h_1 &=& h_2 \\ u_1 + p_1 v_1 &=& u_2 + p_2 v_2 \end{array} \\ \end{array}$$

Internal energy + Flow energy = Constant

Thus, the final outcome of a throttling process will depend on the quantity that increases during the process.

If the flow energy increases $(p_2v_2 > p_1v_1)$, it can do so at the expense of the internal energy. As a result, internal energy decreases, which is usually accompanied by a drop in temperature. If the product pv decreases, the internal energy and the temperature of a fluid will increase during throttling process.

16. (a)

Mass = 1 kg of ideal gas
Initial,
$$P_1 = 100$$
 kPa
 $T_1 = 250$ K
Final, $T_2 = 500$ K
 $R = 287$ J/kgK
 $\gamma = 1.4$
 $W_{1-2} = -\left(\frac{P_2V_2 - P_1V_1}{n-1}\right)$
 $= \frac{-mR(T_2 - T_1)}{n-1}$
 $U_{1-2} = U_2 - U_1 = mc_v (T_2 - T_1)$
 $Q_{1-2} = U_{1-2} + W_{1-2}$
 $Q_{1-2} = 1 \times 0.718(500 - 250) - \frac{1 \times 0.287(500 - 250)}{1.3 - 1}$

 $Q_{1-2} = -59.666 \text{ kJ}$ $Q_{1-2} = 59.666 \text{ kJ}$ (Heat transfer from piston cylinder to its surrounding)

Alternatively,

$$\begin{aligned} Q_{1-2} &= \frac{\gamma - n}{\gamma - 1} \times \left(\frac{P_1 V_1 - P_2 V_2}{n - 1}\right) = \frac{\gamma - n}{\gamma - 1} \times \frac{m \times R \times (T_1 - T_2)}{n - 1} \\ &= \frac{1.4 - 1.3}{1.4 - 1} \times \frac{1 \times 0.287 \times (250 - 500)}{1.3 - 1} \end{aligned}$$

 $Q_{1-2} = -59.666$ kJ $Q_{1-2} = 59.666$ kJ (Heat transfer from piston cylinder to its surrounding)

Air,
$$\gamma = 1.4$$

From steady flow energy equation,

$$h_{1} + \frac{V_{1}^{2}}{2} + Q = h_{2} + \frac{V_{2}^{2}}{2} + W_{net}^{0}$$

$$\left[1005(303 - 318) + \frac{200^{2}}{2}\right] - 4000 = \frac{V_{2}^{2}}{2}$$

$$V_{2} = 43.0116 \text{ m/s}$$
Mass flow rate = $\rho_{2}A_{2}V_{2}$

$$2 = \rho_{2} \times 400 \times 10^{-4} \times 43.0116$$

$$\rho_{2} = 1.1624 \text{ kg/m}^{3}$$

$$P_{2} = \rho_{2}RT_{2}$$

$$= 1.1624 \times 0.287 \times 318 = 106.094 \text{ kPa}$$

18. (d)

Taking chamber *A* and chamber *B* together as a system.

Since dQ = dU + dWdQ = dW = 0 $\Rightarrow \qquad dU = 0$

No change in internal energy \Rightarrow No change in temperature of air.

 \Rightarrow

 \Rightarrow

Ideal gas equation,T = Constant

$$P_1V_1 = P_2V_2$$

 $P_2 = \frac{P_1V_1}{V_2} = (1000) \times \frac{2}{4} = 500 \text{ kPa}$

19. (a)

$$T_{H} = 727 + 273 = 1000 \text{ K}$$

 $T_{L} = 27 + 273 = 300 \text{ K}$
 $T_{H} = 727^{\circ}\text{C}$
 Q_{S}
 Q_{R}
 $T_{L} = 27^{\circ}\text{C}$

The maximum possible efficiency of a heat engine operating between two thermal reservoir,

$$\eta = 1 - \frac{T_L}{T_H} = 1 - \frac{300}{1000} = 0.7$$

Efficiency claimed by the inventor $\eta_{\text{claim}} = \frac{W}{Q_1} = \frac{0.6}{1} = 0.6$

So, claimed efficiency (0.6) is less than the maximum possible efficiency (0.7) and hence the claimed device is feasible as a heat engine.

20. (c)

21.

Mixture of gas,

(a)
Oxygen (O₂) = 0.1 kmol
Nitrogen (N₂) = 0.1 kmol
Methane (CH₄) = 0.8 kmol
Molar mass,
O₂ = 32 kg/kmol
N₂ = 28 kg/kmol
CH₄ = 16 kg/kmol
Mass of O₂ = Mole × Molar mass
= 0.1 × 32 = 3.2 kg
Mass of N₂ = Mole × Molar mass
= 0.1 × 28 = 2.8 kg
Mass of CH₄ = Mole × Molar mass
= 0.8 × 16 = 12.8 kg
Mass fraction of N₂ =
$$\frac{m_{N_2}}{m_{O_2} + m_{N_2} + m_{CH_4}} = \left(\frac{2.8}{3.2 + 2.8 + 12.8}\right) = 0.148$$

(a)
Volume of the balloon is = $m[v_f + xv_{f_8}]$
= 2[0.001053 + 0.85 (1.1594 - 0.001053)]
= 1.971 m³

$$\frac{\pi}{6}D^3 = 1.971$$

D = 1.55 m

22. (a)

Given:

 $P_1 = 0.8725$ kPa, $T_1 = 273 + 5 = 278$ K, $P_2 = ?$, $T_2 = 10 + 273 = 283$ K, R = 0.4615 kJ/kgK, $h_{fg} = 2489.1$ kJ/kg From Clapeyron equation,

$$\left(\frac{dP}{dT}\right)_{sat} = \frac{P.h_{fg}}{RT^2}$$
$$\left(\frac{dP}{P}\right) = \frac{h_{fg}}{R} \left(\frac{dT}{T^2}\right)$$

For small temperature internal,

$$\ln\left(\frac{P_2}{P_1}\right) = \frac{h_{fg}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\ln\left(\frac{P_2}{0.8725}\right) = \frac{2489.1}{0.4615} \left(\frac{1}{278} - \frac{1}{283}\right)$$

$$P_2 = 1.229 \text{ kPa} \approx 1.23 \text{ kPa}$$

23. (d)

$$W_{\text{reversible form}} = Q\left(1 - \frac{T_L}{T_H}\right) = 600\left(1 - \frac{300}{900}\right) = 400 \text{ kW}$$
Irreversibility = $W_{\text{rev}} - W_{\text{actual}}$
= 400 - 200 = 200 kW

24. (a)

As given:

$$\eta_{\rm I} = \eta_{\rm II}$$

 $T = \sqrt{T_H T_L} = \sqrt{1300 \times 300} = 624.5 \,\rm K$

Therefore, the temperature of the intermediate reservoir T = 624.5 K

$$\frac{Q_2}{Q_1} = \frac{T}{T_H}$$

$$Q_2 = \frac{624.5 \times 100}{1300} = 48.038 \text{ kJ}$$

$$\eta_{\text{II}} = 1 - \frac{300}{624.5} = 51.96\%$$

$$W_{\text{II}} = \eta_{\text{II}}Q_2 = 0.5196 \times 48.038 = 24.96 \text{ kJ}$$

 \Rightarrow

 \Rightarrow

India's Beet Institute for IES, GATE & PSUs

25. (c)

Volume = 1 m³ Mole of CO₂, $n_1 = 0.2 n$ Where *n* is total number of mole of mixture (CO₂ + O₂) Mole of O₂, $n_2 = 0.8n$ Initial, $P_1 = 100$ kPa Initial, $T_1 = 300$ K Final pressure, $P_2 = 500$ kPa, Temperature = 300 K Assume mole of N_2 as n_3 From ideal gas equation,

$$\frac{PV}{n\overline{R}}$$
 = Constant

 $[\overline{R} = \text{Universal constant}]$

$$PV = n\overline{R}T$$

For isothermal process,

$$\frac{P_1V_1}{(n_1 + n_2)\overline{R}} = \frac{P_2V_2}{(n_1 + n_2 + n_3)\overline{R}}$$
$$\frac{100 \times 1}{(0.2n + 0.8n)} = \frac{500 \times 1}{(0.2n + 0.8n + n_3)}$$
$$100 (n + n_3) = 500 \times n \qquad \dots (i)$$
At initial point,
$$n = \frac{P_1V_1}{RT_1} = \frac{100 \times 1 \times 10^3}{8.3145 \times 300} = 40 \text{ mole}$$
From (i),
$$100n + 100n_3 = 500n$$
$$n_3 = \frac{400 \times 40}{100} = 160 \text{ mole}$$

26. (a)

Insulated rigid tank,

Given: $v = 0.8 \text{ m}^3$, m = 1.5 kg, $P_i = 100 \text{ kPa}$, $P_f = 135 \text{ kPa}$, $T_o = 298 \text{ K}$, PV = mRTAt V = Constant $P \propto T$

$$\frac{P_i}{P_f} = \frac{T_i}{T_f} \Rightarrow \frac{T_1}{T_2} = \frac{P_1}{P_2}$$

Exergy destroyed, $\Delta X = T_o S_{gen}$
 $\Delta X = 298 \times \left[mc_v \ln\left(\frac{T_f}{T_i}\right) \right] = 298 \times \left[1.5 \times 680 \ln\left(\frac{135}{100}\right) \right]$
 $\Delta X = 91.219 \text{ kJ}$

27. (c)

Mass balance:
$$m_i - m_e = m_2 - m_1$$

 $m_e = m_1 - m_2$
Energy balance: $(\Delta E)_{\text{system}} = E_{\text{in}} - E_{\text{out}}$
 $E_{\text{in}} = m_i h_i + Q_i + W_i = W_i$ $(Q_i = 0, m_i h_i = 0)$
 $E_{\text{out}} = m_e h_e + Q_e + W_e = m_e h_e$ $(Q_e = 0, W_e = 0)$
 $W_i - m_e h_e = m_2 u_2 - m_1 u_1$
 $W_i - (m_1 - m_2)h_e = m_2 u_2 - m_1 u_1$
 $m_1 = \frac{P_1 V_1}{RT_1} = \frac{500 \times 1.7}{0.287 \times 323} = 9.169 \text{ kg}$
 $m_2 = \frac{P_2 V_2}{RT_2} = \frac{200 \times 1.7}{0.287 \times 323} = 3.667 \text{ kg}$
 $u_2 = u_1 = c_v T$
 $W_i = (m_1 - m_2)h_e + m_2 u_2 - m_1 u_1$
 $= 5.502 \times 1.005 \times 323 + (-5.502) \times 0.718 \times 323$
 $= 510.04 \text{ kJ}$

28. (a)

Mass of air in the room,

© Copyright: MADE EASY

 \Rightarrow -25a = +b... (i) \Rightarrow At x = 20 cm, $t = 100^{\circ}$, 100 = 400a + b \Rightarrow From equation (i), 100 = 400a - 25a $a = \frac{100}{375} = \frac{4}{15}$ $b = -25 \times \frac{4}{15} = -\frac{20}{3}$ $+ \left(-\frac{20}{3}\right) = 53.33^{\circ}C$ \Rightarrow 1 3°C

At
$$x = 15$$
, $t = \frac{4}{15} \times 15^2 + \left(-\frac{20}{3}\right) = 53.33^{\circ}$

India's Beet Institute for IES (GATE & PSI Is

(d)

29.

For a rigid closed vessel; $\delta W = 0$ and

$$\begin{split} v_f + x(v_g - v_f) &= v_c \\ \Rightarrow & 0.0010605 + x(0.8857 - 0.0010605) = 0.003155 \\ & x &= 2.367 \times 10^{-3} \\ & u_1 &= u_f + x u_{fg} \\ & = 504.49 + (2.367 \times 10^{-3}) \ (2529.5 - 504.49) \\ & = 509.283 \ \text{kJ/kg} \\ & u_2 &= u_c = 2029.6 \ \text{kJ/kg} \end{split}$$
 From first law of thermodynamics,

$$\delta Q = \delta W + dU$$

$$\delta Q = 0 + m(u_2 - u_1)$$

$$= 2 \times (2029.6 - 509.283)$$

$$= 3040.6 \text{ kJ}$$