CLASS TEST

S.No. : 01 **PT_CE_A+B_090819**

Engineering Hydrology

MADE EASY

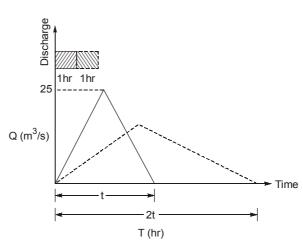
India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST 2019-2020

CIVIL ENGINEERING


Date of Test: 09/08/2019

ANSWER KEY		>	Enginee	ring	Hydrology				
1.	(b)	7.	(c)	13.	(c)	19.	(b)	25.	(d)
2.	(d)	8.	(a)	14.	(a)	20.	(b)	26.	(c)
3.	(a)	9.	(d)	15.	(c)	21.	(a)	27.	(d)
4.	(a)	10.	(c)	16.	(d)	22.	(d)	28.	(a)
5.	(a)	11.	(c)	17.	(b)	23.	(c)	29.	(c)
6.	(a)	12.	(a)	18.	(b)	24.	(c)	30.	(c)

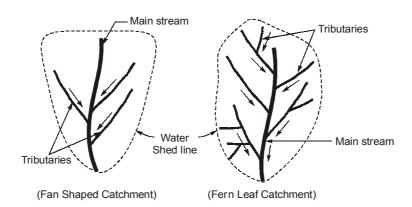
Detailed Explanations

1. (b)

For 2-hr UH, the base time will increase, hence peak will go down.

2. (d)

Certain chemicals such as cetyl alcohol (hexadecanol) and stearyl alcohol (octadecanol) forms monomolecular layers on a water surface. These layers act as evaporation inhibitors by preventing the water molecules to escape past them.


4. (a)

Since variation is more than 10%,

$$P_x = \frac{105}{3} \left[\frac{156}{155} + \frac{140}{150} + \frac{104}{120} \right]$$

= 98.2 cm

5. (a)

$$Q_{\text{equilibrium}} = 2.78 \frac{A}{T}$$

= $2.78 \times 360 \times \frac{1}{4} \simeq 250 \text{ cumecs}$

7. (c)

The limiting case of a UH of zero duration is known as IUH (Instantaneous Unit Hydrograph). The ordinate of one IUH at any time 't' is the slope of S-curve of intensity 1 cm/hr.

8. (a)

Isopleth is a line on a map connecting points having same numerical values of a certain quantity such as population figure or geographical measurement. Isobars are contour lines that connects different points with same constant pressure. Isochrones are lines on a map connecting points relating to equal time of travel of surface runoff or equal time of concentration.

11. (c)

...

...

Peak of DRH = $135 - 10 = 125 \text{ m}^3/\text{s}$ P = 54 mm, $\phi = 4 \text{ mm/hr}$ n = P - $\phi \times t = 54 - 4 \times 1 = 50 \text{ mm} = 5 \text{ cm}$

Peak of 1 hr. UH =
$$\frac{125}{5} = 25 \text{ m}^3/\text{s}$$

12. (a)

For DRH,

n = 2 + 3 = 5 cm
(
$$\Sigma O$$
) = (1 + 7 + 26 + 37 + 27 + 13 + 1) - 7 = 105
n = $\frac{0.36\Sigma Ot}{A}$

 \Rightarrow

$$A = \frac{0.36 \times 105 \times 1}{5} = 7.56 \text{ km}^2$$

13. (c)

P = 5 × 2 = 10 cm
= 10 × 10⁻² × 100 × 10⁴ = 10⁵ m³
R = 1 m³/s × 10 × 60 × 60 = 36000 m³
∴ Runoff coefficient =
$$\frac{R}{P} = \frac{36000}{10^5} = 0.36$$

14. (a)

Time (hr)	4- <i>h</i> UH (m ³ /s)	S-curve addition	S-curve	Offset S-curve	Δy	$6\text{-}h UH = (\Delta y \times 4/6)$
0	0	-	0	-	0	0
2	9		9	-	9	6
4	20	0	_ 20	-	20	13.33
6	35	9	44	0	44	29.33
8	43	20	63	9	54	36
10	22	44	66	20	46	30.67
		63		44		
		66		69		
				66		

15. (c)

(i) Mean rainfall,
$$(\overline{P}) = \frac{\Sigma P}{n} = \frac{800 + 620 + 400 + 560}{4} = 595 \text{ mm}$$

(ii) Standard deviation, $\sigma = \sqrt{\frac{(P - \overline{P})^2}{n - 1}} = 165.23$
(iii) Coefficient of variation, $c_v = \frac{100 \sigma}{\overline{P}} = \frac{100 \times 166.93}{595} = 27.77$

(iv) Optimum number of rain gauges,
$$(N) = \left(\frac{c_v}{\epsilon}\right)^2 = \left(\frac{28.29}{10}\right)^2 \Rightarrow 7.7113 \approx 8$$
 Nos

(v) Additional gauges required to be installed

16. (d)

Time (1)	Total Stream flow in cumecs (2)	Base flow in cumecs (3)	Direct run off = column (2) – 4.8 (4)
0	4.8	4.8	0
2	5.1	4.8	0.3
4	6.5	4.8	1.7
6	7.4	4.8	2.6
8	10.2	4.8	5.4
10	8.8	4.8	4.0
12	7.4	4.8	2.6

Using Simpson's rule, the area enclosed by this discharge hydrograph

$$= \frac{H}{3} \left[\frac{1^{st} + \text{last ordinate}}{2} + 4 \times \text{Even ordinates} + 2 \times \text{odd ordinates} \right]$$

$$= \frac{2 \times 60 \times 60}{3} \left[\frac{0 + 2.6}{2} + 4(0.3 + 2.6 + 4.0) + 2(1.7 + 5.4) \right]$$

$$= 103440 \text{ m}^3$$

$$\therefore \text{ Depth of water in the hydrograph} = \frac{103440}{400 \times 10^4} = 2.586 \times 10^{-2} \text{m or } 2.586 \text{ cm}$$

$$\text{Rainfall} = 4 \text{ cm}$$

$$\text{Runoff} = 2.586 \text{ cm}$$

$$\therefore \text{ Infiltration including basin recharge} = 4 - 2.586 = 1.414 \text{ cm}$$

$$t_r = 4 \text{ hr (given)}$$

...

Loss = Rainfall – Runoff =
$$\frac{0.8}{100} \times 6 - \frac{256000}{8.6 \times 10^6} = 0.01823 \text{ m} = 1.823 \text{ cm}$$

 $\phi_{index} = \frac{1.414}{4} = 0.35 \text{ cm/hr}$

Rate of loss = $\frac{1.823}{6} = 0.304 \text{ cm/hr}$

18. (b)

The probability of occurrence of an event ($x \ge x_T$) at least once over a period of n successive years is called the risk, \overline{R} .

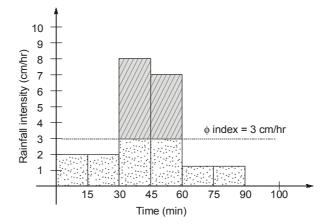
Hence, risk is given by

 $\overline{R} = 1 - ($ Probability of occurrence of the event $x \ge x_T$ in *n* years)

where,

$$T = \operatorname{Return \, period} = 50 \text{ years}$$

$$T = \operatorname{Expected \, life} = 25 \text{ years}$$


19. (b)

Thiessen Polygon Method: In this method, the rainfall recorded at each station is given a weightage on the basis of an area closest to the station.

$$P_{avg} = \frac{P_1A_1 + P_2A_2 + ... + P_nA_n}{A_1 + A_2 + ... + A_n}$$

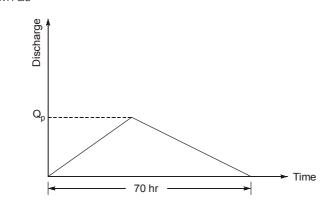
where, $P_1, P_2, \dots P_n$ are the rainfall data of areas $A_1, A_2 \dots A_n$.

20. (b)

Hatched portion shows the total runoff and dotted portion shows the total infiltration.

$$\therefore \qquad \text{Total runoff} = (8-3) \times \frac{15}{60} + (7-3) \times \frac{15}{60} = [(8-3) + (7-3)] \times \frac{15}{60} = 2.25 \text{ cm}$$

$$\text{Total precipitation} = 2 \times \frac{15}{60} + 2 \times \frac{15}{60} + 8 \times \frac{15}{60} + 7 \times \frac{15}{60} + 1.25 \times \frac{15}{60} + 1.25 \times \frac{15}{60}$$


$$= (2+2+8+7+1.25+1.25) \times \frac{15}{60} = 5.375 \text{ cm}$$

$$W\text{-index} = \frac{\text{Total precipitation} - \text{Runoff}}{\text{Duration of rainfall in hr}} = \frac{5.375 - 2.25}{90 / 60}$$

$$= 2.083 \text{ cm/hr} \simeq 2.08 \text{ cm/hr}$$

24. (c)

Let the peak of the UH be $\mathrm{Q}_{\mathrm{P}}.$ The UH can be shown as

Area of DRH gives the volume of rainfall,

25. (d)

Total rainfall = 0.5 + 1.8 + 2.9 = 5.2 cm Infiltration = 5.2 - 2 = 3.2 cm Excess rainfall duration, $t_e = 2 \times 3 = 6$ hrs.

$$\phi$$
-index = $\frac{3.2}{6}$ = 0.533 cm/hr

This value being more than 0.5 cm/hr,

The excess rainfall duration will reduce by 2 hrs.

$$t_e = 4$$
 hrs.
Infiltration = (1.8 + 2.9) - 2 = 2.7 cm

$$\phi$$
-index = $\frac{2.7}{4}$ = 0.675 cm/hr

26. (c)

...

$$\overline{x} = \frac{1}{n} \sum n_i = \frac{80 + 90 + 100 + 60 + 70}{5} = 80 \text{ cm}$$

The standard deviation of the rainfall is given by

$$\sigma = \sqrt{\frac{(x - \overline{x})^2}{n - 1}}$$
$$\sigma = 15.81$$
$$C_V = \frac{\sigma}{\overline{x}} \times 100 = 19.76$$

 \Rightarrow

$$N = \left(\frac{C_V}{\epsilon}\right)^2 = \left(\frac{19.76}{6}\right)^2 = 10.85 \simeq 11$$

Thus, additional number of rainguages = 11 - 5 = 6

27. (d)

Time base of both the unit hydrographs is same. Let it be *t*.

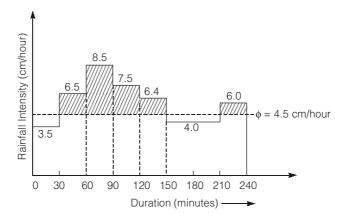
$$\therefore \quad \frac{1}{2} \times 30 \times t \times \frac{1}{235} = \frac{1}{2} \times 90 \times t \times \frac{1}{A_2}$$
$$\Rightarrow \qquad A_2 = 235 \times 3$$
$$\Rightarrow \qquad A_2 = 705 \text{ km}^2$$

28. (a)

The calculations are tabulated below:

I	1		1 1	
Time (hr)	FH (m ³ /s)	Base Flow (m ³ /s)	DRH (m ³ /s)	
Col. (1)	Col. (2)	Col. (3)	Col. (4)	
0	5	5	0	
12	15	5	10	
24	40	5	35	
36	80	5	75	
48	60	5	55	
60	50	5	45	
72	25	5	20	
84	15	5	10	
96	5	5	0	
			ΣO = 250	

Base flow = $5 \text{ m}^3/\text{sec}$


Now, direct runoff depth,
$$DRD = \frac{0.36 \times \Sigma O \times t}{A}$$

where

...

$$\Sigma O = 250 \text{ m}^3/\text{s}; t = 12 \text{ hr}; A = 450 \text{ km}^2$$

 $DRD = \frac{0.36 \times 250 \times 12}{450} = 2.4 \text{ cm}$

29. (c)

Rainfall excess is shown by hatched area. Total rainfall

$$P = (3.5 + 6.5 + 8.5 + 7.5 + 6.4 + 4.0 + 4.0 + 6.0) \times \frac{30}{60} = 23.2 \text{ cm}$$

Total rainfall excess

$$R = \left[(6.5 - 4.5) + (8.5 - 4.5) + (7.5 - 4.5) + (6.4 - 4.5) + (6.0 - 4.5) \right] \times \frac{30}{60}$$
$$= (2 + 4 + 3 + 1.9 + 1.5) \times \frac{1}{2} = 6.2 \text{ cm}$$
$$W\text{-index} = \frac{P - R}{t} = \frac{23.2 - 6.2}{4} = 4.25 \text{ cm/hour}$$

www.madeeasy.in

30. (c)

	Time(hr)	0	12	24	36	48	
	Inflow (m^3/s)	100	750	780	470	270	
$Q_{\rm initi}$	$_{al} = 100 \text{m}^3/\text{s}$	•		•			
	k = 18 hours						
	x = 0.3						
24	$x < \Delta t < k$						
$2 \times 18 \times 0.$	$3 < \Delta t < 18$						
Δ	$\Delta t = 12 \text{hrs}$						
Using Muskingham equation	n						
C	$P_0 = \frac{-kx+0}{k(1-x)}$	0.5 Δt + 0.5 ⊿	$\frac{1}{\Delta t} = \frac{1}{2}$	-18× 18(1-	:0.3+ 0.3)+	0.5×1 0.5×1	$\frac{2}{2} = 0.0323$

$$C_{0} = \frac{k(1-x) + 0.5 \Delta t}{k(1-x) + 0.5 \Delta t} = \frac{18(1-0.3) + 0.5 \times 12}{18(1-0.3) + 0.5 \times 12} = 0.613$$

$$C_{2} = \frac{k(1-x) - 0.5 \Delta t}{k(1-x) + 0.5 \Delta t} = \frac{18(1-0.3) - 0.5 \times 12}{18(1-0.3) + 0.5 \times 12} = 0.355$$