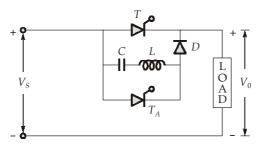
	.CAS:	5 TE	ST -			SL	.:01_Sk	(_ABCD_1	4042023	
India's Best Institute for IES, GATE & PSUs										
Delhi Bhopal Hyderabad Jaipur Pune Bhubaneswar Kolkata										
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612										
	PC	DW	/ER	l El	_EC	TR		NIC	S	
									-	
				RICAL	_ EN	GINE	ERIN	IG	-	
	-		ECTF	RICAL				IG		
	-		ECTF					IG		
	_		ECTF					1G		
AN	SWER K	EL	ECTF Dat					IG		
AN 1.	_	EL	ECTF Dat		st : 14/		23	IG 25.		
	SWER K	EL (EY >	ECTF Dat	e of Te	st : 14/	04/202	23 (a)		(b)	
1.		EL (EY > 7.	ECTF Dat	e of Te 13. 14.	st : 14/	04/20 2 19.	23 (a) (b)	25.	(b) (b)	
1. 2.	SWER (c) (b)	EL (EY > 7. 8. 9.	ECTF Dat (d) (b)	e of Te 13. 14.	st:14/ (c) (b) (d)	04/20 19. 20.	23 (a) (b) (c)	25. 26.	(b) (b) (c)	
1. 2. 3.	SWER k (c) (b) (c)	EL (EY > 7. 8. 9. 10.	ECTF Dat (d) (b) (d)	e of Te 13. 14. 15.	st:14/ (c) (b) (d) (c)	04/20 2 19. 20. 21. 22.	23 (a) (b) (c)	25. 26. 27.	(b) (b) (c) (c)	

7

DETAILED EXPLANATIONS

1. (c)


We know in case of Snubber circuit,

$$\left(\frac{di}{dt}\right)_{\max} = \frac{V_m}{L} \quad \text{Where, } V_m = 220\sqrt{2} \text{ V}$$
$$\left(\frac{di}{dt}\right)_{\max} = \frac{220\sqrt{2}}{40 \times 10^{-6}} = 7.78 \text{ A/}\mu\text{sec}$$

2. (b)

...

In class *B* commutation

Peak current through capacitor,

$$I_p = V_S \sqrt{\frac{C}{L}} = 230 \sqrt{\frac{20}{5}} = 460 \text{ A}$$

The conduction time of auxiliary thyristor,

$$T_A = \frac{t}{\omega_r}$$

The resonant frequency,

$$\omega_r = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5 \times 10^{-6} \times 20 \times 10^{-6}}}$$
$$= \frac{1}{10 \times 10^{-6}} = 0.1 \times 10^6 \text{ rad/s}$$
$$T_A = \frac{\pi}{\omega} = \frac{\pi}{0.1 \times 10^6} = 10 \text{ π μsec}$$

3. (c)

:.

For boost converter peak to peak ripple voltage,

$$\Delta V_0 = \frac{\alpha I_0}{fC} = \frac{0.40 \times 10}{50 \times 10^3 \times 120 \times 10^{-6}} = 0.66 \text{ V}$$

4. (b)

For single phase PWM inverter pulse width,

$$2d = 140^{\circ}$$

$$d = 70^{\circ}$$
Ratio =
$$\frac{\text{Maximum value of third harmonics output voltage}}{\text{Maximum value of fundamental output voltage}}$$

$$= \frac{\frac{4V_s}{3\pi}\sin(3\times70^\circ)\sin\left(\frac{3\pi}{2}\right)}{\frac{4V_s}{\pi}\sin\left(\frac{\pi}{2}\right)\sin(70^\circ)} = \frac{1}{3}\frac{(-0.5)\times(-1)}{1\times0.9397} = 0.177 \approx 0.18$$

Ratio = 0.18

5. (d)

$$V_{0n, \text{ rms}} = \frac{4V_s}{n\pi\sqrt{2}}\sin nd \cdot \sin\frac{n\pi}{2}$$
$$nd = \pi$$

For eliminating third harmonic

$$3d = π$$

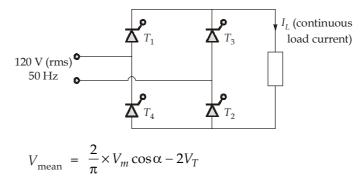
$$d = \frac{\pi}{3} = 60^{\circ}$$

∴ pulse width

$$2d = 120^{\circ}$$

$$V_{01, \text{ rms}} = \frac{2\sqrt{2}V_s}{\pi} \times \sin 60^{\circ} = \frac{\sqrt{6}V_s}{\pi} V$$

6. (b)


For natural turn-off, peak resonant current $\left(\frac{V_s}{Z_0} \text{ or } V_s \sqrt{\frac{C}{L}}\right)$ must be greater than load current I_0 .

7. (d)

Amplitude of the 60 Hz fundamental frequency component of the output voltage is $V_1 = m_a V_{dc} = 0.8 \times 100 = 80 \text{ V}$

8. (b)

For a single phase fully controlled bridge circuit

Where, V_m is peak sinusoidal value, α is firing angle and V_T is thyristor voltage drop

For

$$V_m = 120\sqrt{2} \text{ V},$$

$$\alpha = 45^{\circ}$$

$$V_{\text{mean}} = \frac{2}{\pi} \times 120\sqrt{2} \cos 45^{\circ} - 2 \times (1.5)$$

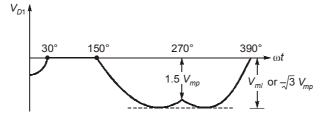
$$= \frac{2}{\pi} \times 120\sqrt{2} \times \frac{1}{\sqrt{2}} - 3 = 73.39 \text{ V}$$

are across each thyristor = V

Peak value of voltage across each thyristor = V_{max}

$$= 120\sqrt{2} = 169.71 \text{ V}$$

9. (d)


If factor of safety = 2Allowable values:

10. (b)

So,

Also

PIV of a diode in 3-phase bridge rectifier is V_{ml} or $\sqrt{3}V_{mp}$.

11. (b)

Maximum value of line voltage,

$$V_{ml} = \sqrt{2}V_l = 230\sqrt{2} \text{ V}$$

Average output voltage,

$$V_0 = \frac{3V_{ml}}{\pi} = 310.60 \text{ V}$$

 $V_0 = E + I_0 R$

$$\frac{V_0 - E}{R} = I_0 = \frac{310.60 - 240}{8} = 8.82 \text{ A}$$

As current is ripple free,

$$I_{0r} = I_0 = 8.82 \text{ A}$$

RMS value of fundamental component of source current,

$$I_{s\,1} = \frac{2\sqrt{3}}{\pi} \times \frac{I_0}{\sqrt{2}}$$

RMS value of source current,

$$I_s = \left[\frac{I_0^2 \times 2\pi}{\pi \times 3}\right]^{1/2} = \sqrt{\frac{2}{3}}I_0$$

Current distortion factor,

$$CDF = \frac{I_{s1}}{I_s} = \frac{2\sqrt{3}I_0}{\sqrt{2}\pi} \times \frac{\sqrt{3}}{\sqrt{2}I_0} = \frac{3}{\pi} = 0.955$$

12. (b)

Due to source inductance,

Average reduction in output voltage,

$$\Delta V_{d0} = 4 f L_s I_0$$

= 4 × 50 × (12 × 10⁻³) × 16 = 38.4 V
$$\Delta V_{d0} = \frac{V_m}{\pi} [\cos\alpha - \cos(\alpha + \mu)]$$

As $\alpha = 0^{\circ}$ for diodes

: Conduction angle

$$38.4 = \frac{V_m}{\pi} [1 - \cos\mu]$$

$$38.4 = \frac{230\sqrt{2}}{\pi} [1 - \cos\mu]$$

$$\cos\mu = 1 - 0.37$$

$$\mu = \cos^{-1} 0.63$$

$$\mu = 50.95^{\circ}$$
e of diode

13. (c)

Output voltage of Buck boost converter,

$$V_0 = \frac{-D}{1-D}V_S = \frac{-0.3 \times 28}{1-0.3}$$
$$= \frac{-0.3}{0.7} \times 28 = -12 \text{ V}$$

Average current through inductor,

$$I_L = \frac{V_S D}{R(1-D)^2} = \frac{28 \times 0.3}{5(0.7)^2} = 3.42 \text{ A}$$

India Best Institute for IES CATE & Police

14. (b)

$$m_{i} = \text{modulation index} < 1$$

$$V_{01 \text{ (peak)}} = \frac{m_{i}V_{dc}}{2} = \frac{0.8 \times 200}{2} = 80 \text{ V}$$

$$I_{01 \text{ (peak)}} = \frac{V_{01\text{peak}}}{\sqrt{R^{2} + (\omega L)^{2}}} = \frac{80}{\sqrt{8^{2} + (12)^{2}}}$$

$$= \frac{80}{14.422} = 5.547 \approx 5.55 \text{ A}$$

15. (d)

Total energy loss, $E_{\text{total}} = E_{t1} + E_{t2}$

$$E_{t1} = \int_{0}^{t_1} Vi \cdot dt$$

As voltage across the switch is constant ie. 500 V

$$= 500 \int_{0}^{t_{1}} i \cdot dt = 500 \times \frac{1}{2} \times (0.4 \times 10^{-6}) \times 40 = 4 \text{ m}$$

Similarly

 $E_{t2} = \int_{0}^{t_2} Vi \cdot dt$

As switch current is constant ie. 30 A

$$E_{t2} = 30 \int_{0}^{t_2} V \cdot dt = 30 \times \frac{1}{2} \times (0.4 \times 10^{-6}) \times 500 = 3 \text{ mJ}$$

.:. total energy loss in process

$$= 4 \text{ mJ} + 3 \text{ mJ} = 7 \text{ mJ}$$

16. (c)

For given 3-\u00f6 rectifier,

$$V_{0, \text{ rms}} = \frac{V_{ml}}{2\sqrt{\pi}} \left[\left(\frac{5\pi}{6} - \alpha \right) + \frac{1}{2} \sin\left(2\alpha + \frac{\pi}{3} \right) \right]^{1/2}$$
As
$$\alpha = \frac{\pi}{4} = 0.785$$

$$= \frac{220\sqrt{2}}{2\sqrt{\pi}} \left[(2.618 - 0.785) + \frac{1}{2} \sin(90^{\circ} + 60^{\circ}) \right]^{1/2}$$

$$= \frac{220\sqrt{2}}{2\sqrt{\pi}} \left[(1.833) + \frac{1}{2} \times \frac{1}{2} \right]^{1/2} = 126.67 \text{ V}$$
The rms current
$$= \frac{V_{0, \text{rms}}}{R} = \frac{126.67}{20} = 6.33 \text{ A}$$
Power consumed by the load

Tl

=
$$(6.33)^2 \times 20$$

= 801.38 W

17. (d)

Current distortion factor for single phase semi converter,

CDF =
$$\frac{2\sqrt{2}\cos\left(\frac{\alpha}{2}\right)}{\sqrt{\pi(\pi-\alpha)}} = \frac{2\sqrt{2}\cos\left(\frac{45}{2}\right)}{\sqrt{\pi\left(\pi-\frac{\pi}{4}\right)}} = \frac{2.613}{\sqrt{\frac{3\pi^2}{4}}} = \frac{2.613}{2.721} = 0.960$$

18. (b)

With *T* as the time of a cycle,

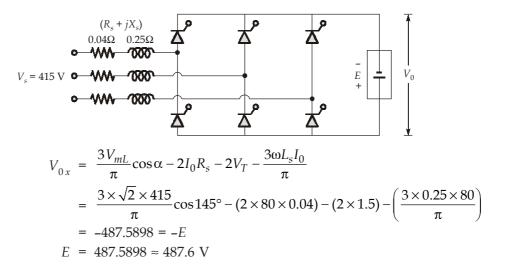
The average power loss = $\frac{1}{T} \int_{0}^{2T/3} V_f \cdot I_f dt$ $P = \frac{2}{3} \cdot V_f \cdot I_f$ $V_f = 0.80 + (0.015 \times 50)$ $V_f = 1.55 \text{ V}$ and $P = \frac{2}{3} \times 1.55 \times 50 = 51.67 \text{ W}$ *:*.. $I_{\rm rms} = \sqrt{\frac{1}{T} \int_{0}^{\frac{2T}{3}} (50)^2 dt}$ $I_{\rm rms} = 50\sqrt{\frac{2}{3}} = 40.82 \text{ A}$

19. (a)

Hence it is mentioned in the given data that there is no losses.

$$V_{0} = \frac{3V_{mL}}{\pi} \cos \alpha = E$$

Since, back emf
$$E \propto N$$
$$\frac{E_{1}}{E_{2}} = \frac{N_{1}}{N_{2}}$$
$$E_{1} = 2E_{2}$$
$$\left(\therefore N_{2} = \frac{1}{2}N_{1} \right)$$
So,
$$E_{2} = \frac{E_{1}}{2} = \frac{V_{0}}{2} = 220 \text{ V}$$
$$\frac{3 \times \sqrt{2} \times 440}{\pi} \cos \alpha = 220$$
$$\cos \alpha = \frac{220 \times \pi}{3 \times \sqrt{2} \times 440} = 0.3702$$
Input power factor of the supply


$$= \frac{3}{\pi} \cos \alpha = \frac{3}{\pi} \times 0.3702 = 0.353$$

Sc

CT-2022-23 EE • Power Electronics 13

India's Beet Institute for IES, GATE & PSUe

20. (b)

21. (c)

...

Given, for single phase full converter,

$$V_0 = 146.42 \text{ V}$$

$$I_0 = \frac{V_0}{R} = \frac{146.42}{10} = 14.64 \text{ A}$$
Reactive power $Q = V_0 I_0 \tan \alpha$
2.143 × 10³ = 146.42 × 14.64 tan α
tan $\alpha = 0.9997$
 $\alpha = 45^{\circ}$

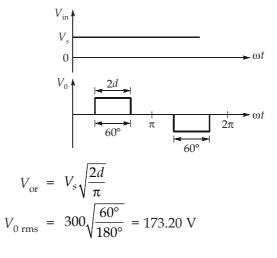
22. (b)

The given chopper is a step down chopper,

$$V_{0} = \alpha V_{s}$$

$$V_{0} = I_{0} (R_{a} + R_{se}) + E_{b} = \alpha V_{s} = 200 (0.06 + 0.04) + 200 = \alpha \cdot 440$$

$$\alpha = \frac{220}{440}$$


$$\alpha = 0.5$$

$$T_{on} = \alpha \cdot T = 0.5 \times \frac{1}{500} = 1 \text{ ms}$$

23. (d)

Average load current =
$$\frac{12+16}{2}$$
 = 14 A
Average load voltage = $V_0 = I_0R = 14 \times 10 = 140$ V
 $V_0 = \alpha V_s$
Since the chopper is step down or type-A,
 $140 = \alpha 200$
 $\alpha = \frac{140}{200} = 0.7$
 $\frac{T_{on}}{T_{on} + T_{off}} = 0.7$
 $0.3 T_{on} = 0.7 T_{off}$
 $\frac{T_{on}}{T_{off}} = 2.33$

24. (a)

25. (b)

$$I_0 = 50 \sin(\omega t - 30^\circ) \text{ A}$$

The given current have only fundamental component so only fundamental voltage component will be responsible for power.

$$V_{01} = \frac{4V_s}{\sqrt{2}\pi} = \frac{4 \times 200}{\sqrt{2}\pi}$$

= 180.06 V

Taking voltage as reference,

$$\phi = 30^{\circ}$$
Active power, $P = V_{01} I_{01} \cos \phi$

$$= \frac{180.06 \times 50}{\sqrt{2}} \times \cos 30^{\circ} = 5513.19 \text{ W} \approx 5.51 \text{ kW}$$

$$P = 5.51 \text{ kW}$$

26. (b)

Output voltage Buck-boost converter,

$$V_0 = -\frac{D}{1-D}V_S$$
$$V_0 = \frac{-0.4}{1-0.4} \times 24 = -16 \text{ V}$$

Average current through inductor,

$$I_{L} = \frac{V_{S}D}{R(1-D)^{2}} = \frac{24 \times 0.4}{5(1-0.4)^{2}}$$

$$I_{L} = 5.33 \text{ A}$$

$$\Delta i_{L} = \frac{V_{S}DT}{L} = \frac{24 \times 0.4}{20 \times 10^{-6} \times 100 \times 10^{3}} = 4.8 \text{ A}$$

$$I_{L, \max} = I_{L} + \frac{\Delta i_{L}}{2} = 5.33 + \frac{4.8}{2} = 7.73 \text{ A}$$

MADE EASY

$$I_{L,\min} = I_L - \frac{\Delta i_L}{2} = 5.33 - \frac{4.8}{2} = 2.93 \text{ A}$$

The ratio of inductor currents,

$$\frac{I_{L,\max}}{I_{L,\min}} = \frac{7.73}{2.93} = 2.63$$

27. (c)

> Given, source voltage, V_s = 230 V Peak current, $I_p = 2 I_0$ (load current) = 2(200) = 400 A $I_p = V_s \sqrt{\frac{C}{L}}$

and

$$\sqrt{\frac{C}{L}} = \frac{I_p}{V_s} = \frac{400}{230}$$
$$\sqrt{\frac{L}{C}} = \frac{230}{400}$$

or,

Peak capacitor voltage, $V_{cp} = V_s + I_0 \sqrt{\frac{L}{C}}$

From equation (i), we get

Peak capacitor voltage, $V_{cp} = V_s + I_0 \sqrt{\frac{L}{C}}$ $V_{cp} = 230 + 200 \left(\frac{230}{400}\right)$ = 230 + 115 = 345 V

28.

(c)

Output voltage,

$$V_0 = DV_s$$

$$5 = D \times 12$$

$$D = 0.416$$

Peak to peak ripple current, $\Delta I = \frac{V_s D(1-D)}{Lf}$

$$0.8 = \frac{12 \times 0.416(1 - 0.416)}{25 \times 10^3 \times L}$$
$$L = 0.145 \times 10^{-3} \text{ H}$$

We know that

Peak to peak ripple voltage, $\Delta V = \frac{V_s D(1-D)}{8LCf^2}$ $C = \frac{V_s D(1-D)}{8Lf^2 \times \Delta V} = \frac{12 \times 0.416(1-0.416)}{0.145 \times 10^{-3} \times (25 \times 10^3)^2 \times 20 \times 10^{-3} \times 8} = 201.06 \,\mu\text{F}$

...(i)

29. (d)

V_0	= 80 V
V_{in}	= 100 V
for buck boost converter,	
V ₀	$= \frac{V_{\rm in}D}{1-D}$
or 80	$= \frac{100D}{1-D}$
or D	= 0.44
$\frac{T_{on}}{T}$	= 0.44
Т	$= \frac{1}{f} = \frac{1}{10 \times 10^3} = 100\mu\text{s}$
T _{on}	= $0.44 \times 100 = 44 \ \mu s$
	$= T - T_{on}$
$T_{\rm off}$	$= 100 - 44 = 56 \ \mu s$

30. (a)

It is single phase half bridge inverter

or

 $V_s = 40 \text{ V}$

 $\frac{V_s}{2} = 20$

The fundamental component of output voltage is

$$V_{01} = \frac{2V_s}{\sqrt{2}\pi} = \frac{2 \times 40}{\sqrt{2} \times \pi} = 18 \text{ V}$$
$$Z = \sqrt{1^2 + 1^2} = \sqrt{2} \Omega$$
$$I_{01} = \frac{18}{\sqrt{2}} = 12.728 \text{ A}$$
$$P = I_{01}^2 R = (12.728)^2 \times 1$$
$$P = 162.00 \text{ W}$$