

DETAILED EXPLANATIONS

1. (d)

For minimum pull, force P must be perpendicular to $O A$.

$$
A B=\sqrt{500^{2}-300^{2}}=400 \mathrm{~mm}
$$

Taking moments about point A,

$$
\begin{aligned}
W \times 400 & =P \times 500 \\
W & =\frac{8 \times 500}{400}=10 \mathrm{kN}
\end{aligned}
$$

2. (b)

The system of forces is shown in figure.

Resolving forces in horizontal direction,

$$
\begin{aligned}
\Sigma F_{H} & =20 \cos 0^{\circ}+30 \cos 30^{\circ}+40 \cos 60^{\circ}+50 \cos 90^{\circ}+60 \cos 120^{\circ} \\
& =(20 \times 1)+\left(30 \times \frac{\sqrt{3}}{2}\right)+\left(40 \times \frac{1}{2}\right)+(50 \times 0)+\left(60 \times \frac{-1}{2}\right) \\
& =20+15 \sqrt{3}+20-30 \\
\Sigma F_{H} & =35.98 \mathrm{~N} \\
\Sigma F_{V} & =20 \sin 0^{\circ}+30 \sin 30^{\circ}+40 \sin 60^{\circ}+50 \sin 90^{\circ}+60 \sin 120^{\circ} \\
& =(20 \times 0)+\left(30 \times \frac{1}{2}\right)+\left(40 \times \frac{\sqrt{3}}{2}\right)+(50 \times 1)+\left(60 \times \frac{\sqrt{3}}{2}\right) \\
& =0+15+20 \sqrt{3}+50+30 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
\Sigma F_{V} & =151.60 \mathrm{~N} \\
R & =\sqrt{\left(\Sigma F_{H}\right)^{2}+\left(\Sigma F_{V}\right)^{2}}=\sqrt{(35.98)^{2}+(151.60)^{2}}
\end{aligned}
$$

Resultant force, $R=155.81 \mathrm{~N}$
3. (a)

As the rod reaches it lowest position, the center of mass is lowered by a distance l. Its gravitational potential energy is decreased by mgl .
Rotation occurs about the horizontal axis through the clamped end.

$$
\text { Moment of inertia, } I=\frac{\mathrm{ml}^{2}}{3}
$$

Now, by energy conservation;

$$
\begin{aligned}
\frac{1}{2} I \omega^{2} & =(m g l) \\
\frac{1}{2}\left(\frac{m l^{2}}{3}\right) \omega^{2} & =(m g l) \\
\omega^{2} & =\frac{6 g}{l} \\
\omega & =\sqrt{\frac{6 g}{l}}
\end{aligned}
$$

Linear speed of the free end at given instant, $v=l \omega$

$$
\begin{aligned}
V & =l \times \sqrt{\frac{6 g}{l}} \\
V & =\sqrt{6 g l}
\end{aligned}
$$

4. (a)

The acceleration of the centre of mass,

$$
a_{c m}=\left(\frac{F}{m+m}\right)=\frac{F}{2 m}
$$

The change in position of the centre of mass at time t,

$$
x=\frac{1}{2}\left(a_{c m}\right) \times t^{2}=\frac{1}{2} \times\left(\frac{F}{2 m}\right) \times t^{2}=\frac{F t^{2}}{4 m} \quad \text { (initial velocity is zero) }
$$

5. (b)

Taking moment about point E.
Let tension in member $D F$ is T.

$$
\begin{aligned}
\Sigma M_{E} & =0 \\
5 T-5 \times 20-10 \times 30 & =0 \\
T & =80 \mathrm{kN}
\end{aligned}
$$

$\because \triangle \mathrm{ABC}, \triangle \mathrm{BCD}$ and $\triangle \mathrm{CDE}$ are equilateral triangles.

$$
\begin{aligned}
\Sigma F_{x} & =0 \\
80 \cos 30^{\circ} & =E_{x} \\
E_{x} & =69.282 \mathrm{kN} \\
\Sigma F_{y} & =0 \\
80 \sin 30^{\circ}+E_{y}-20-30 & =0 \\
E_{y} & =50-40=10 \mathrm{kN} \\
\text { Total reaction at } E & =\sqrt{E_{x}^{2}+E_{y}^{2}}=\sqrt{(69.282)^{2}+10^{2}}=69.99 \mathrm{kN}=70 \mathrm{kN}
\end{aligned}
$$

6. (d)

$$
\text { Rate of change of speed }=\frac{\vec{v} \cdot \vec{a}}{|\vec{v}|}=\frac{(\hat{i}+2 j+3 \hat{k})(2 \hat{i}+3 \hat{j})}{\sqrt{1+4+9}} \simeq 2.14 \mathrm{~m} / \mathrm{s}^{2}
$$

Note: Rate of change of speed means the component of acceleration in the direction $\stackrel{T_{B A}}{ }$ velocity.
7. (d)

Applying Lami's theorem,

$$
\begin{aligned}
\frac{T_{B C}}{\sin \left(90^{\circ}+65^{\circ}\right)} & =\frac{200}{\sin \left(50^{\circ}+25^{\circ}\right)} \\
\Rightarrow \quad T_{B C} & =87.5 \mathrm{~N}
\end{aligned}
$$

8. (b)

$$
\begin{array}{rlrl}
R_{2} \cos 45^{\circ} & =R_{1} \\
R_{2} \sin 45^{\circ} & =W \\
\Rightarrow & R_{2} & =W \sqrt{2} \\
\therefore & R_{1} & =W \sqrt{2} \times \frac{1}{\sqrt{2}}=W \\
\therefore \quad W & =50 \mathrm{~N} \\
& R_{1} & =50 \mathrm{~N}
\end{array}
$$

9. (b)

Cutting section about, 1-2, 2-5 and 5-6:

Taking moment of left part about 5 .

$$
F_{1-2}=\frac{50 \times 6}{3}=100 \mathrm{kN}(\mathrm{~T})
$$

Cutting section through 1-2, 1-5 and 4-5 and balancing vertical forces for left part only, $\Sigma F_{V}=0$

$$
\begin{aligned}
\Rightarrow \quad F_{1-5} \times \cos 45^{\circ}+50 & =0 \\
F_{1-5} \cos 45^{\circ} & =-50 \\
\frac{F_{1-5}}{\sqrt{2}} & =-50 \Rightarrow F_{1-5}=50 \sqrt{2} \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

10. (b)

Given: $\vec{P}=(4 \hat{i}+5 \hat{j}+3 \hat{k}) \mathrm{kg}-\mathrm{m} / \mathrm{s}, \quad \vec{r}=(1 \hat{i}+2 \hat{j}+5 \hat{k}) \mathrm{m}$
Angular momentum, $\vec{L}=\vec{r} \times \vec{P}$

$$
\begin{aligned}
\vec{L} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 5 \\
4 & 5 & 3
\end{array}\right|=-19 \hat{i}-\hat{j}(-17)+\hat{k}(-3) \\
& =-19 \hat{i}+17 \hat{j}-3 \hat{k} \\
\Rightarrow \quad(\vec{L}) & =\sqrt{19^{2}+17^{2}+3^{2}}=25.67 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

11. (c)

Given: Span $=10 \mathrm{~m}$
Let, R_{A} and R_{B} are reaction at supports A and B respectively. The perpendicular distance between the support A and the line of action of the loads at D is

$$
A D=\frac{10}{2 \times \cos 30^{\circ}}=\frac{5}{\cos 30^{\circ}}=5.77 \mathrm{~m}
$$

The perpendicular distance between the support A and the line of action of the load at C.

$$
A C=\frac{A D}{2}=\frac{5.77}{2}=2.885 \mathrm{~m}
$$

Taking moment about A,

$$
R_{B} \times 10=(4 \times 2.885)+(2 \times 5.77) \Rightarrow R_{B}=2.308 \mathrm{kN}
$$

Total wind load $=2+4+2=8 \mathrm{kN}$
Horizontal component of total load, $\left(F_{H}\right)_{\text {net }}=8 \cos 60^{\circ}=4 \mathrm{kN}$
Vertical component of total load $=8 \sin 60^{\circ}=6.928 \mathrm{kN}$
Balance vertical reaction at $\mathrm{A},\left(R_{A}\right)_{y}=4.620 \mathrm{kN}$

$$
\text { Total reaction at } A, R_{A}=\sqrt{\left(R_{A}\right)_{x}^{2}+\left(R_{A}\right)_{y}^{2}}=\sqrt{4^{2}+4.62^{2}}=6.111 \mathrm{kN}
$$

12. (c)

$$
\begin{aligned}
\delta x_{2} & =\frac{\Delta x \sin 30^{\circ}}{2} \\
F_{2} & =2 \mathrm{kN} \\
\delta x_{1} & =\Delta x \sin 30^{\circ} \\
F_{1} & =P \sin 30^{\circ} \\
F_{1} \times \Delta x_{1} & =F_{2} \times \Delta x_{2}
\end{aligned}
$$

$$
\begin{aligned}
P \sin 30^{\circ} \times \Delta x \sin 30^{\circ} & =2 \times \frac{\Delta x \sin 30^{\circ}}{2} \\
\Rightarrow \quad & P
\end{aligned}
$$

13. (d)

At joint J,

$$
15 \mathrm{kN}
$$

$$
\begin{align*}
& \Sigma F_{H}=0 \\
& P_{G J} \cos 45^{\circ}+P_{H J} \sin 45^{\circ}=0 \\
& P_{G J}=-P_{H J} \tag{1}\\
& \Sigma F_{V}=0 \\
& P_{G J} \sin 45^{\circ}-P_{H J} \sin 45^{\circ}-15=0 \\
& 2 P_{G J} \sin 45^{\circ}=15 \\
& P_{G J}=\frac{15 \times \sqrt{2}}{2}=10.606 \mathrm{kN} \\
& \Sigma F_{V}=0 \\
& \text { At joint } G, \\
& P_{F G} \cos 45^{\circ}+P_{G J} \cos 45^{\circ}=0 \\
& P_{F G}=-P_{G J}=-10.606 \mathrm{kN} \\
& \Sigma F_{H}=0 \\
& P_{D G}+P_{F G} \sin 45^{\circ}=P_{G J} \sin 45^{\circ} \\
& P_{D G}=10.606 \sin 45^{\circ}-\left(-10.606 \sin 45^{\circ}\right) \\
&=2 \times 10.606 \sin 45^{\circ} \\
& P_{D G}=15 \mathrm{kN}(\text { Tension })
\end{align*}
$$

14. (a)

Let the angular speed be ω.
As the ball moves in a horizontal circle of radius $L+L \sin \theta$. Its acceleration is $\omega^{2}(L+L \sin \theta)$ towards the centre.
Resolving the forces along the radius and applying Newton's second law,

$$
\begin{equation*}
T \sin \theta=m \omega^{2} L(1+\sin \theta) \tag{i}
\end{equation*}
$$

In vertical direction,

$$
\begin{equation*}
T \cos \theta=m g \tag{ii}
\end{equation*}
$$

Now, by equation (i) \div (ii)

$$
\begin{aligned}
\frac{T \sin \theta}{T \cos \theta} & =\frac{m \omega^{2} L(1+\sin \theta)}{m g} \\
\tan 30^{\circ} & =\frac{\omega^{2} \times 0.2\left(1+\sin 30^{\circ}\right)}{10}
\end{aligned} \quad\left(\because \theta=30^{\circ}\right)
$$

$$
\begin{aligned}
\omega^{2} & =\frac{10}{0.2 \times 1.5 \times \sqrt{3}} \\
\omega^{2} & =19.245 \\
\omega & =4.387 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

15. (c)

Given: $h_{o}=1 \mathrm{~m}=100 \mathrm{~cm} ; h_{1}=81 \mathrm{~cm}$
Let, coefficient of restitution is e.
Velocity with which ball impinges, $u=\sqrt{2 g h_{o}}=\sqrt{2 g \times 100}=10 \sqrt{2 g} \mathrm{~cm} / \mathrm{s}$
Velocity with which the ball rebounds, $v=\sqrt{2 g h_{1}}=\sqrt{2 g \times 81}=9 \sqrt{2 g} \mathrm{~cm} / \mathrm{s}$
We know that,

$$
\begin{aligned}
v & =e u \\
9 \sqrt{2 g} & =e(10 \sqrt{2 g}) \\
e & =0.9
\end{aligned}
$$

Velocity with which which the ball impinges second time, $u_{2}=\sqrt{2 g h_{1}}=\sqrt{2 g \times 81}=9 \sqrt{2 g} \mathrm{~cm} / \mathrm{s}$ Now, velocity with which ball rebounds, $v=e u$

$$
\begin{aligned}
\sqrt{2 g h_{2}} & =0.9 \times 9 \sqrt{2 g} \\
h_{2} & =(8.1)^{2}
\end{aligned}
$$

Expected height of second bounce, $h_{2}=65.61 \mathrm{~cm}$
16. (a)

Taking horizontal and vertical component.

$$
\begin{align*}
\Sigma \mathrm{F}_{\mathrm{V}} & =0 \\
F \sin \theta+N & =m g \\
N & =m g-F \sin \theta \quad \ldots \tag{i}\\
\Sigma F_{H} & =0 \\
F \cos \theta & =\mu \mathrm{N} \\
F \cos \theta & =\mu(m g-F \sin \theta) \\
F(\cos \theta+\mu \sin \theta) & =\mu m g
\end{align*}
$$

By eq. (i),

$$
F=\left(\frac{\mu m g}{\cos \theta+\mu \sin \theta}\right)
$$

Work done by this force for a displacement d will be,

$$
\begin{aligned}
& W=F \times d \cos \theta=\frac{\mu m g d \cos \theta}{(\cos \theta+\mu \sin \theta)} \\
& W=\frac{\mu m g d}{(1+\mu \tan \theta)}
\end{aligned}
$$

17. (d)

Given: $u=100 \mathrm{~m} / \mathrm{s}, \alpha=30^{\circ}$

Let, t is the time from the instant of projection, when the particle will move perpendicular to its initial direction.
$\theta=-60^{\circ}$
(When the particle will move perpendicular to its initial direction. Here minus sign is for downward direction or for clockwise direction)
In horizontal direction, $\left(V_{B}\right) \cos \left(-60^{\circ}\right)=u \cos \alpha$

$$
\begin{equation*}
\left(V_{B}\right) \cos \left(-60^{\circ}\right)=u \cos \alpha \tag{1}
\end{equation*}
$$

In vertical direction,

$$
\begin{equation*}
\left(V_{B}\right) \sin \left(-60^{\circ}\right)=u \sin \alpha-g t \tag{2}
\end{equation*}
$$

By equation (2) $\div(1)$

$$
\begin{aligned}
\frac{\sin \left(-60^{\circ}\right)}{\cos \left(-60^{\circ}\right)} & =\frac{u \sin 30^{\circ}-\mathrm{gt}}{u \cos 30^{\circ}} \\
\tan \left(-60^{\circ}\right) & =\frac{100 \times 0.5-9.81 t}{\left(100 \times \frac{\sqrt{3}}{2}\right)} \\
-\sqrt{3} \times 50 \times \sqrt{3} & =50-9.81 t \\
9.81 t & =50+150 \\
t & =\frac{200}{9.81}=20.387 \text { seconds }
\end{aligned}
$$

18. (d)

Given; $N_{1}=10 \mathrm{rev} / \mathrm{s} ; \omega_{1}=2 \pi \mathrm{~N}_{1}=20 \pi \mathrm{rad} / \mathrm{s}, N_{2}=18 \mathrm{rev} / \mathrm{s} ; \omega_{2}=2 \pi \mathrm{~N}_{2}=36 \pi \mathrm{rad} / \mathrm{s}$
$t_{1}=4$ second, $t_{2}=8$ second, $\mathrm{N}=400$ revolutions
$\alpha=$ Angular acceleration of the shaft
We know that,

$$
\begin{aligned}
\omega_{2} & =\omega_{1}+\alpha t_{1} \\
36 \pi & =20 \pi+\alpha \times 4 \\
\alpha & =4 \pi \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

α remains same for $(8+4)=12$ second. Total displacement in 12 seconds.

$$
\begin{aligned}
& \theta_{1}=\omega_{1} t_{2}+\frac{1}{2} \alpha t_{2}^{2} \\
& \theta_{1}=20 \pi \times 12+\frac{1}{2} \times 4 \pi \times 12^{2}=240 \pi+2 \pi \times 144
\end{aligned}
$$

$$
\theta_{1}=528 \pi \text { radian }
$$

Angular velocity after 12 seconds,

$$
\begin{aligned}
\omega_{f} & =\omega_{1}+\alpha t_{1} \\
\omega_{f} & =20 \pi+4 \pi \times 12 \\
\omega_{f} & =68 \pi \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Now, total revolutions completed in first 12 seconds $=\frac{\theta_{1}}{2 \pi}=\frac{528 \pi}{2 \pi}=264$ revolutions Number of revolutions to be completed $=400-264=136$ revolutions
Now,

$$
\begin{array}{rlr}
\theta & =\omega_{f} t & {[\because \alpha=0]} \\
{[136 \times 2 \pi]} & =68 \pi \times t_{3} & \\
t_{3} & =4 \text { seconds } &
\end{array}
$$

Total time required $=12+4=16$ seconds
19. (d)

We know that,

$$
\text { Work done, } d W=\vec{F} \cdot \overrightarrow{d r}=\vec{F}(d x \hat{i}+d y \hat{j})=k \int\left[\frac{x d x}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y d y}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right]
$$

Given, It is moving along a circular path of radius ' a '. So, $x^{2}+y^{2}=a^{2}$

$$
\begin{aligned}
\int_{0}^{W} d W & =k\left[\int_{a}^{0} \frac{x d x}{a^{3}}+\int_{0}^{a} \frac{y d y}{a^{3}}\right] \\
W & =\frac{k}{a^{3}}\left[\left[\frac{x^{2}}{2}\right]_{a}^{0}+\left[\frac{y^{2}}{2}\right]_{0}^{a}\right] \\
W & =\frac{k}{a^{3}}\left[0-\frac{a^{2}}{2}+\frac{a^{2}}{2}-0\right] \\
W & =0
\end{aligned}
$$

20. (c)

Given, $M=50 \mathrm{~kg}, m=6.25 \mathrm{~kg}, R=0.4 \mathrm{~m}, r=0.2 \mathrm{~m}$

Applying angular momentum conservation, about vertical axis of rotation,

$$
\begin{aligned}
\left(\frac{M R^{2}}{2}\right) \times \omega_{0} & =\left[\frac{M R^{2}}{2}+2 m r^{2}+\left(2 m r^{2}\right)\right] \omega^{\prime} \\
\left(\frac{50 \times 0.4^{2}}{2}\right) \times 10 & =\left(\frac{50 \times 0.4^{2}}{2}+4 \times 6.25 \times(0.2)^{2}\right) \omega^{\prime} \\
\Rightarrow \quad \frac{40}{5} & =\omega^{\prime} \\
\omega^{\prime} & =8 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

21. (d)

Using work energy theorem:
(Work done by all forces) $=$ (Change in kinetic energy)

$$
\begin{aligned}
W_{\mathrm{mg}}+W_{F} & =\Delta \mathrm{kE} \\
(-\mathrm{mgh})+F d & =\Delta \mathrm{kE} \\
-1 \times 10 \times 4+18 \times 5 & =\Delta \mathrm{kE} \\
\Delta \mathrm{kE} & =50 \mathrm{~J}
\end{aligned}
$$

22. (b)

Let speed of the car at the topmost point of the loop is V and m is the mass of the car. By energy conservation between top most point of loop and at starting point,

$$
\begin{align*}
0+0 & =-m g h+\frac{1}{2} m v^{2} \\
m v^{2} & =2 m g h \tag{1}
\end{align*}
$$

At top most point of the circle normal reaction will be minimum.
For successful looping,

$$
\text { Normal reaction, } N \geq 0
$$

By Newton's II ${ }^{\text {nd }}$ law at topmost point,

$$
\begin{aligned}
& N+m g=\frac{m v^{2}}{R} \\
& m g+N=\frac{2 m g h}{R}
\end{aligned}
$$

For minimum value of $h, \mathrm{~N}$ should be minimum i.e. 0

$$
\begin{aligned}
m g+0 & =\frac{2 m g h_{\min }}{R} \\
h_{\min } & =\frac{R}{2}
\end{aligned}
$$

23. (d)

Given, $m=5 \mathrm{~kg}, \theta=30^{\circ}$
Let, linear acceleration of the sphere down the plane be a and radius of sphere is r.
Along the plane by Newton's II ${ }^{\text {nd }}$ law,

$$
\begin{equation*}
m g \sin \theta-f=m a \tag{1}
\end{equation*}
$$

If sphere rolls without slipping, angular acceleration about the center will be $\frac{a}{r}$.
Taking moment about center of mass,

$$
\begin{aligned}
& f \times r=(\mathrm{I}) \alpha \\
& f \times r=\left(\frac{2}{5} m r^{2}\right) \times\left(\frac{a}{r}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { Friction force, } f=\frac{2}{5} m a \tag{2}
\end{equation*}
$$

By equation (1) and (2),

$$
\begin{aligned}
m g \sin \theta & =\left(\frac{7}{5}\right) m a \\
a & =\frac{5}{7} g \sin \theta \\
\text { Frictional force, } f & =\frac{2}{5} m a=\frac{2}{5} \times \frac{5}{7} m g \sin \theta=\frac{2}{7} m g \sin \theta
\end{aligned}
$$

Maximum friction force will be $m g \cos \theta$. Where μ is coefficient of static friction.
For pure rolling, $\mu m g \cos \theta \geq \frac{2}{7} m g \sin \theta$

$$
\begin{array}{ll}
& \mu \geq \frac{2}{7} \times \tan 30^{\circ} \\
\Rightarrow \quad & \mu \geq 0.165
\end{array}
$$

24. (c)

Let, $N=$ Magnitude of the contact force between the particle and the pan
$T=$ Tension in the string
By impulse momentum equation, for particle of mass ' m '.

$$
\begin{equation*}
\int N d t=m v-\mathrm{m}(k v) \tag{1}
\end{equation*}
$$

By impulse-momentum equation for pan,

$$
\begin{equation*}
\int(N-T) d t=m(k v) \tag{2}
\end{equation*}
$$

By impulse-momentum equation for block,

$$
\begin{equation*}
\int T d t=m(k v) \tag{3}
\end{equation*}
$$

Adding equation (2) and (3),

$$
\begin{equation*}
\int N d t=2 m(k v) \tag{4}
\end{equation*}
$$

From eq. (1) and (4)

$$
\begin{aligned}
2 m(k v) & =m v-m(k v) \\
v & =3 k v \\
k & =\frac{1}{3}
\end{aligned}
$$

25. (c)

Given:

$$
\begin{aligned}
V_{1} & =350 \mathrm{kmph}=350 \times \frac{5}{18}=97.222 \mathrm{~m} / \mathrm{s} \\
V_{2} & =200 \mathrm{kmph}=200 \times \frac{5}{18}=55.555 \mathrm{~m} / \mathrm{s} \\
F & =m a \\
m a & =-27.5 V^{2} \\
m \times\left(\frac{V d V}{d s}\right) & =-\left(27.5 V^{2}\right) \quad\left[\because a=\frac{d V}{d t}=\left(\frac{d V}{d s}\right) \times\left(\frac{d s}{d t}\right)\right]
\end{aligned}
$$

We know that,

$$
\begin{aligned}
8000 \times\left(\frac{d V}{V}\right) & =-(27.5) d s \\
8000 \int_{97.222}^{55.555}\left(\frac{d V}{V}\right) & =-27.5 \int_{0}^{s} d s \\
8000[\ln V]_{97.222}^{55.555} & =-27.5 \times s \\
s & =-\left(\frac{8000}{27.5}\right) \times \ln \left(\frac{55.555}{97.222}\right) \\
s & =162.8 \mathrm{~m}
\end{aligned}
$$

26. (a)

Given: $\mathrm{W}=700+300=1000 \mathrm{~N}$
Let, tension in string is T.
By equations of equilibrium, $\Sigma F_{x}=0$

$$
\begin{align*}
& R_{b}=T \cos 30^{\circ} \\
& R_{b}=\left(\frac{\sqrt{3}}{2}\right) T \tag{i}
\end{align*}
$$

$\Sigma F_{y}=0, \quad W+T \sin 30^{\circ}=R_{a}$

$$
\begin{equation*}
(0.5) T+1000=R_{a} \tag{ii}
\end{equation*}
$$

$\Sigma M_{E}=0$,

$$
\begin{align*}
R_{b} \times 4+W \times 1 & =R_{a} \times 2 \\
2 R_{b}+(0.5) \times 1000 & =R_{a} \tag{iii}
\end{align*}
$$

By equation (ii) and (iii)

$$
2 R_{b}+500=(0.5) T+1000
$$

By equation (i),

$$
\begin{aligned}
\left(2 \times \frac{\sqrt{3}}{2}\right) T-0.5 T & =500 \\
T & =\frac{500}{\sqrt{3}-0.5}=405.827 \mathrm{~N}
\end{aligned}
$$

27. (a)

There are three forces acting on the bar $A B$; pull Q at B, tension in string T and reaction at point A i.e. R_{a}.
For isosceles triangle $A B C$,

$$
\beta=\gamma=\left(\frac{\pi-\alpha}{2}\right)=90^{\circ}-\left(\frac{\alpha}{2}\right)
$$

If there is no friction on pulley, tension in string $B C$ will be P.
Taking moment about point A,
$(P \cos \delta) \times(l \sin \alpha)+(P \sin \delta)(l \cos \alpha)=Q l \sin \alpha$

$$
\begin{aligned}
P l \sin (\alpha+\delta) & =Q l \sin \alpha \\
P \sin \left(180^{\circ}-\beta\right) & =Q \sin \alpha \\
P \sin \left[180-90+\frac{\alpha}{2}\right] & =Q \sin \alpha \\
P \cos \frac{\alpha}{2} & =2 Q \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}
\end{aligned}
$$

$$
\begin{aligned}
\left(\cos \frac{\alpha}{2}\right)\left[P-2 Q \sin \frac{\alpha}{2}\right] & =0 \\
\sin \frac{\alpha}{2} & =\frac{P}{2 Q}
\end{aligned}
$$

or

$$
\begin{aligned}
& \alpha=2 \sin ^{-1}\left(\frac{P}{2 Q}\right)=2 \sin ^{-1}\left(\frac{900}{2 \times 2200}\right)=23.6057^{\circ} \\
& \alpha=23.6057 \times\left(\frac{\pi}{180}\right)=0.412 \text { radian }
\end{aligned}
$$

28. (c)

Given: $M=2000 \mathrm{~kg}, v_{1}=2 \mathrm{~m} / \mathrm{s}, v_{2}=0$, for drum $m=50 \mathrm{~kg}, \mathrm{k}=0.7 \mathrm{~m}, R=0.75 \mathrm{~m}, h=0.5 \mathrm{~m}$

$$
\begin{aligned}
& \Delta k E \text { of mass }=\frac{1}{2} M\left(v_{1}^{2}-v_{2}^{2}\right)=\frac{1}{2} \times 2000 \times\left(2^{2}-0^{2}\right)=4000 \mathrm{~J} \\
& \Delta k E \text { of drum }=\frac{1}{2} m k^{2}\left(\omega_{1}^{2}-\omega_{2}^{2}\right)=\frac{1}{2} \times 50 \times 0.7^{2} \times\left[\left(\frac{2}{0.75}\right)^{2}-0^{2}\right]=87.11 \mathrm{~J}
\end{aligned}
$$

$$
\triangle P E \text { of the mass }=m g h=2000 \times 9.81 \times 0.5=9810 \mathrm{~J}
$$

the total energy absorbed by the break is given by

$$
\begin{aligned}
E & =\Delta k E \text { of mass }+\Delta k E \text { of drum }+\triangle P E \text { of mass } \\
& =4000+87.11+9810 \\
E & =13897.11 \mathrm{~J} \simeq 13897 \mathrm{~J}
\end{aligned}
$$

29. (b)

For maximum acceleration, the applied force should be such that it balances the effect of frictional force and gravity. Hence applied force,

$$
F_{a}=m a \cos \theta-m g \sin \theta
$$

$$
\left.\begin{array}{l}
\text { For no slipping } \\
r l r l \\
m a \cos \theta-m g \sin \theta
\end{array} \begin{array}{rl}
F_{a} & \leq \frac{1}{2 \sqrt{3}}(m g \cos \theta+m a \sin \theta) \\
\text { On solving, } & a
\end{array}\right)=\frac{3 \sqrt{3} g}{5} .
$$

30. (c)

$$
\text { Lagrangian, } \begin{aligned}
L & =T-V \\
& =v^{2} \dot{u}^{2}+2 \dot{v}^{2}-u^{2}+v^{2} \\
& =v^{2}\left(1+\dot{u}^{2}\right)+\left(2 \dot{v}^{2}-u^{2}\right)
\end{aligned}
$$

The equation of motion, using langrangian (L) for $q=u$,
$\Rightarrow \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{u}}\right)-\frac{\partial L}{\partial u}=0$
$\Rightarrow \quad \frac{d}{d t}\left(2 v^{2} \dot{u}\right)-(-2 u)=0$
$\Rightarrow \quad 2\left[v^{2} \ddot{u}+2 v \dot{v} \dot{u}\right]+2 u=0$
$\Rightarrow \quad 2 v^{2} \ddot{u}+4 v \dot{v} \dot{u}+2 u=0$

