CLASS TEST

STRENGTH OF MATERIALS

CIVIL ENGINEERING

Date of Test: 23/03/2023

ANSWER KEY

1. (a)
2. (b)
3. (a)
4. (c)
5. (b)
6. (b)
7. (c)
8. (c)
9. (d)
10. (c)
11. (c)
12. (b)
13. (b)
14. (c)
15. (c)
16. (a)
17. (d)
18. (c)
19. (c)
20. (b)
21. (a)
22. (a)
23. (c)
24. (c)
25. (c)
26. (a)
27. (a)
28. (b)
29. (a)
30. (b)

DETAILED EXPLANATIONS

2. (b)

We know deflection of spring,

$$
\delta=\frac{64 W R^{3} n}{G d^{4}}
$$

where, $W=100 \mathrm{~N}, R=25 \mathrm{~mm}, n=12, G=80 \mathrm{GPa}, d=5 \mathrm{~mm}$
So, $\quad \delta=\frac{64 \times 100 \times(25)^{3} \times 12}{80 \times 10^{3} \times 5^{4}}=24 \mathrm{~mm}$
3. (c)

$$
\begin{aligned}
d & =2 \mathrm{~mm} \\
\sigma_{b(\max)} & =80 \mathrm{~N} / \mathrm{mm}^{2} \\
E & =100 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Distance between the neutral axis of wire and its extreme fibre

$$
y=\frac{2}{2}=1 \mathrm{~mm}
$$

So, minimum radius of the drum

$$
\begin{aligned}
R & =\frac{y}{\sigma_{b(\max)}} E \\
& =\frac{1}{80} \times 100 \times 10^{3} \\
& =1.25 \times 10^{3} \mathrm{~mm}=1.25 \mathrm{~m}
\end{aligned}
$$

4. (a)

Internal hinge in given beam will become hinged support in conjugate beam.
5. (a)

$$
\begin{aligned}
\tau_{\max } & =\frac{16}{\pi D^{3}} \sqrt{M^{2}+T^{2}} \\
& =\left[\frac{16}{\pi(100)^{3}} \sqrt{(8)^{2}+(6)^{2}}\right] \times 10^{6} \\
& =\frac{16}{\pi} \times \frac{10 \times 10^{6}}{10^{6}}=50.93 \mathrm{MPa}
\end{aligned}
$$

6. (a)

Taking moments about B,

$$
\begin{aligned}
R_{A} & =\left(\frac{6}{8}\right) \times 5+\frac{3}{8} \times 4+3 \times \frac{2}{8} \\
& =3.75+1.5+0.75=6 t
\end{aligned}
$$

Taking moment about A,

$$
\begin{aligned}
R_{B} & =(5+3+2 \times 2)-R_{A} \\
& =12 t-6 t=6 t \\
\therefore \quad & \frac{R_{A}}{R_{B}}
\end{aligned}=\frac{6 t}{6 t}=1
$$

7. (b)

Due to combined effect of torque and shear force, inner surface will have more shear stress compared to outer surface.
On dividing a spring into m parts, the no. of turns on each spring will be m times less. Since stiffness is inversely proportional to no. of turns, the stiffness will become $m k$.
8. (c)

$$
\begin{aligned}
& \mathrm{Z}=\frac{I}{y}=\frac{225 \times 10^{6}}{\frac{300}{2}}=1.5 \times 10^{6} \mathrm{~mm}^{3} \\
& M=\sigma_{\max } \times Z=120 \times 1.5 \times 10^{6} \\
& =180 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
& M_{\max }=M=\frac{w l^{2}}{8} \\
& \text { So } \\
& \frac{w l^{2}}{8}=180 \times 10^{6}=\frac{w\left(4 \times 10^{3}\right)^{2}}{8} \\
& \Rightarrow \quad w=\frac{180}{2}=90 \mathrm{~N} / \mathrm{mm}=90 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

9. (b)

Flitched beam has a composite section made of two or more materials joined together in such a manner that they behave as a unit piece and each material bends to the same radius of curvature. The total moment of resistance of a flitched beam is equal to the sum of the moments of resistance of individual sections.
10. (d)

$$
\begin{array}{lrl}
\text { By stress invariant law, } & \sigma_{x}+\sigma_{y} & =\sigma_{1}+\sigma_{2} \\
\Rightarrow & 32+(-10) & =40+\sigma_{2} \\
\Rightarrow & \sigma_{2} & =-18 \mathrm{MPa}
\end{array}
$$

11. (a)

Direct longitudinal stress,

$$
\begin{align*}
& \sigma_{x}=\frac{90 \times 10^{3}}{30 \times 30}=100 \mathrm{MPa} \\
& \epsilon_{x}=\frac{1}{E}\left[-\sigma_{x}+v\left(\sigma_{y}+\sigma_{z}\right)\right] \tag{i}\\
& \epsilon_{y}=\epsilon_{z}=\frac{1}{E}\left[-\sigma_{y}+v\left(\sigma_{x}+\sigma_{z}\right)\right]=0 \tag{ii}
\end{align*}
$$

(Compressive)

As we know

$$
\sigma_{y}=\sigma_{z}
$$

Also on solving equation (ii)

$$
\begin{aligned}
& \sigma_{y}=\frac{\nu}{1-v} \sigma_{x}=\frac{0.25}{1-0.25} \sigma_{x}=\frac{\sigma_{x}}{3} \\
& \text { So, } \\
& \epsilon_{x}=\frac{1}{E}\left[-\sigma_{x}+v\left(\sigma_{y}+\sigma_{z}\right)\right]=\frac{1}{E}\left[-\sigma_{x}+v \times 2 \sigma_{y}\right] \\
& =\frac{1}{E}\left[-\sigma_{x}+0.25 \times 2 \times \frac{\sigma_{x}}{3}\right]=\frac{1}{E}\left[-\sigma_{x}+\frac{0.5 \sigma_{x}}{3}\right] \\
& =\frac{1}{100 \times 10^{3}}\left[-100+\frac{0.5 \times 100}{3}\right]=\frac{1}{100 \times 10^{3}}\left[-\frac{250}{3}\right] \\
& \delta l=l \epsilon_{x}=\frac{1}{100 \times 10^{3}}\left[-\frac{250}{3}\right] \times 100 \\
& =0.083 \mathrm{~mm} \quad \text { (Reduction in length) }
\end{aligned}
$$

12. (a)

Strain energy stored in hollow shaft, $U=\frac{\tau_{\max }^{2}}{4 G}\left[\frac{D^{2}+d^{2}}{D^{2}}\right] V$

$$
\begin{aligned}
& =\frac{80^{2}}{4 \times 100 \times 10^{3}}\left[\frac{80^{2}+60^{2}}{80^{2}}\right] \times 10^{6}=\frac{10000 \times 10^{6}}{4 \times 10^{5}}=2.5 \times 10^{4} \mathrm{~N}-\mathrm{mm} \\
& =25 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

13. (a)

Bending moment at A and B is zero. It increases in the form of cubic curve.
Maximum value of bending moment in beam $A B$ occurs where shear force changes sign.
Now we know $\quad R_{A}=\frac{w l}{3}$

$$
R_{B}=\frac{w l}{6}
$$

Let at point x from B, shear force will be zero

$$
\begin{array}{rlrl}
V & =R_{B}-\frac{1}{2} \times \frac{w}{l} x \cdot x \\
\Rightarrow \quad & \frac{w l}{6}-\frac{w x^{2}}{2 l} & =0 \\
\Rightarrow \quad & x & =\frac{l}{\sqrt{3}}
\end{array}
$$

So, bending moment at $x=\frac{l}{\sqrt{3}}$ from B is

$$
\begin{aligned}
M_{\max } & =R_{B} \cdot x-\frac{1}{2} \times \frac{w}{l} x \cdot x \times \frac{x}{3}=\frac{w l}{6} \times \frac{l}{\sqrt{3}}-\frac{1}{2} \times \frac{w}{l} \times \frac{1}{3} \times \frac{l^{3}}{(\sqrt{3})^{3}} \\
& =\frac{w l^{2}}{6 \sqrt{3}}-\frac{w l^{2}}{6 \times 3 \sqrt{3}}=\frac{w l^{2}}{6 \sqrt{3}}-\frac{w l^{2}}{18 \sqrt{3}}=\frac{2 w l^{2}}{18 \sqrt{3}} \\
& =\frac{w l^{2}}{9 \sqrt{3}}
\end{aligned}
$$

14. (c)

We know that area of triangular beam section

$$
\begin{aligned}
A & =\frac{\sqrt{3}}{4} a^{2} \text { for equilateral triangle } \\
& =\frac{\sqrt{3}}{4}(100)^{2}=2500 \sqrt{3} \mathrm{~mm}^{2}
\end{aligned}
$$

Average shear stress across the section

$$
\tau_{\mathrm{avg}}=\frac{F}{A}=\frac{13 \times 10^{3}}{2500 \sqrt{3}}=3 \mathrm{MPa}
$$

So maximum shear stress for triangular section

$$
\begin{aligned}
\tau_{\max } & =1.5 \tau_{\mathrm{avg}} \\
& =1.5 \times 3=4.5 \mathrm{MPa}
\end{aligned}
$$

15. (b)

Let us split up the trapezoidal load into a uniformly distributed load $\left(w_{1}\right)$ of $50 \mathrm{~N} / \mathrm{mm}$ and a triangular load $\left(w_{2}\right)$ of $100 \mathrm{~N} / \mathrm{mm}$ at A to zero at B .
Now slope at free end

$$
\begin{aligned}
\theta_{B} & =\frac{w_{1} l^{3}}{6 E I}+\frac{w_{2} l^{3}}{24 E I}=\left[\frac{50 \times\left(2 \times 10^{3}\right)^{3}}{6 \times 10^{13}}+\frac{100 \times\left(2 \times 10^{3}\right)^{3}}{24 \times 10^{13}}\right] \mathrm{rad} \\
& =0.0067+0.0033=0.01 \mathrm{rad}
\end{aligned}
$$

16. (c)

Free expansion of rod $=\delta l=\alpha l \Delta t=12 \times 10^{-6} \times 20 \times 10^{3}(65-20)=10.8 \mathrm{~mm}$
When the rod is permitted to expand by 5.8 mm in this case, expansion prevented $=10.8-5.8$

$$
=5 \mathrm{~mm}
$$

$$
\begin{aligned}
\therefore \quad \text { Strain prevented } & =\frac{\text { Expansion Prevented }}{\text { Original length }} \\
& =\frac{5}{20 \times 10^{3}}=\frac{1}{4000}
\end{aligned}
$$

$\therefore \quad$ Thermal stress $=$ Strain prevented $\times E$

$$
=\frac{1}{4000} \times 200 \times 10^{3}=50 \mathrm{MPa}
$$

17. (c)

From bending equation, $\frac{f}{y}=\frac{f_{\max }}{y_{\max }}$

$$
\begin{aligned}
\therefore \quad f & =\frac{f_{\max }}{y_{\max }} \times y \\
\therefore \quad \text { Force on shaded area } & =\frac{f_{\max }}{y_{\max }} \times \Sigma A y \\
& =\frac{f_{\max }}{y_{\max }}(A \bar{y})
\end{aligned}
$$

[where A is shaded area, $\bar{y}=$ distance of centroid of shaded area from N.A.]

$$
=\frac{90}{12} \times\left[\frac{15}{2} \times 12\right] \times \frac{2}{3} \times 12=5400 \mathrm{~kg}
$$

18. (b)

$$
\begin{aligned}
\sigma_{x} & =\frac{2.5 \times 10^{3}}{25}=100 \mathrm{MPa}(\mathrm{~T}) \\
\sigma_{y} & =\frac{1250}{25}=50 \mathrm{MPa}(\mathrm{~T}) \\
\sigma_{z} & =\frac{625}{25}=25 \mathrm{MPa}(\mathrm{~T}) \\
\tau_{x y} & =\frac{1000}{25}=40 \mathrm{MPa} \\
\sigma_{1,2} & =\frac{\sigma_{x}+\sigma_{y}}{2} \pm \frac{1}{2} \sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4 \tau_{x y}^{2}} \\
& =\frac{100+50}{2} \pm \frac{1}{2} \sqrt{(100-50)^{2}+4(40)^{2}} \\
\sigma_{1} & =122.17 \mathrm{MPa} \\
\sigma_{2} & =27.83 \mathrm{MPa} \\
\sigma_{3} & =25 \mathrm{MPa}
\end{aligned}
$$

Now according to maximum shear stress theory

$$
\begin{aligned}
\left(\tau_{a b s}\right)_{\max } & \leq \frac{\sigma_{y}}{2(\mathrm{FOS})} \\
\left\{\frac{\left|\sigma_{1}-\sigma_{2}\right|}{2}, \frac{\left|\sigma_{2}-\sigma_{3}\right|}{2}, \frac{\left|\sigma_{3}-\sigma_{1}\right|}{2}\right\}_{\max } & =\frac{\sigma_{y}}{2(\mathrm{FOS})} \\
\frac{\sigma_{1}-\sigma_{3}}{2} & =\frac{\sigma_{y}}{2(\mathrm{FOS})} \\
\mathrm{FOS} & =\frac{75}{122.17-25}=0.77
\end{aligned}
$$

19. (c)

We know that at internal hinge, deflection will be same at just left and right of hinge.
So,

$\left(\delta_{\mathrm{c}}\right)_{\text {left }} \downarrow=\frac{w L^{4}}{8 E I}-\frac{R_{c} L^{3}}{3 E I}$

$$
\begin{equation*}
\left(\delta_{\mathrm{c}}\right)_{\text {right }} \downarrow=\frac{R_{c} L^{3}}{3 E I} \tag{i}
\end{equation*}
$$

So from eq. (i) and (ii)

$$
\begin{aligned}
\Rightarrow \quad & \frac{w L^{4}}{8 E I}-\frac{R_{c} L^{3}}{3 E I} & =\frac{R_{c} L^{3}}{3 E I} \\
\Rightarrow & \frac{2 R_{c} L^{3}}{3 E I} & =\frac{w L^{4}}{8 E I} \\
\Rightarrow & R_{c} & =\frac{3}{16} w L
\end{aligned}
$$

20. (d)

The deformation of the beam will be as shown below.

Now ΔC_{1} is produced due to deflection of C as caused due to deformation of $A B$,

$$
\begin{aligned}
\Delta C_{1} & =\theta_{\mathrm{B}}(B C)=\theta_{\mathrm{B}} a \\
\theta_{\mathrm{B}} & =\frac{M_{B A} l}{3 E I}=\frac{P a l}{3 E I} \\
\therefore \quad \Delta C_{1} & =\frac{\text { Pala }}{3 E I}=\frac{P a^{2} l}{3 E I}
\end{aligned}
$$

ΔC_{2} is produced due to deformation of $B C$

$$
\Delta C_{2}=\frac{P a^{3}}{3 E I}
$$

So total deflection at $C, \Delta C=\Delta C_{1}+\Delta C_{2}$

$$
=\frac{P a^{2} l}{3 E I}+\frac{P a^{3}}{3 E I}
$$

21. (c)

Modulus of section for both timber sections

$$
Z_{T}=2\left[\frac{60 \times(200)^{2}}{6}\right]=8 \times 10^{5} \mathrm{~mm}^{3}
$$

Similarly modulus of section for the steel section

$$
Z_{S}=\frac{15 \times(200)^{2}}{6}=10^{5} \mathrm{~mm}^{3}
$$

Now, moment of resistance of timber section,

$$
\begin{aligned}
M_{T} & =Z_{T} \cdot \sigma_{T} \\
& =8 \times 10^{5} \times 5 \\
& =4 \times 10^{6} \mathrm{~N}-\mathrm{mm}=4 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Similarly,
Moment of resistance of steel section,

$$
\begin{aligned}
M_{S} & =Z_{S} \cdot \sigma_{S} \\
& =10^{5} \times 100 \\
& =10 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
& =10 \mathrm{kNm}
\end{aligned}
$$

Total moment of resistance of the beam

$$
M=M_{S}+M_{T}=10+4=14 \mathrm{kNm}
$$

22. (c)

Radius,

$$
R=\frac{120-(-80)}{2}=100
$$

Tangential stress,

$$
\begin{aligned}
\tau & =R \sin 2 \theta \\
& =100 \sin 60^{\circ} \\
& =100 \times \frac{\sqrt{3}}{2} \\
& =50 \sqrt{3}
\end{aligned}
$$

23. (c)

Since end B is propped
Net deflection at B is zero.

$$
\begin{aligned}
& \Rightarrow \\
& \frac{\left(\delta_{\mathrm{B}} \downarrow\right)_{\mathrm{W}}}{}=\left(\delta_{B} \uparrow\right)_{R_{B}} \\
& 3 E I \\
&\left.\frac{W}{2}\right)^{3} \\
&\left.\frac{W E I}{2}\right)^{2} \\
& \frac{W L^{3}}{24 E I}+\frac{W}{2}=\frac{R_{B} L^{3}}{3 E I} \\
& \frac{2 W L^{3}+3 W L^{3}}{48 E I}=\frac{R_{B} L^{3}}{3 E I} \\
& R_{B}=\frac{R_{B} L^{3}}{3 E I} \\
& R_{A}=W-R_{B}=W-\frac{5 W}{16} \\
& \therefore \quad=\frac{11 W}{16}
\end{aligned}
$$

Bending moment diagram:

For BC:

$$
M_{x}=R_{B} x=\frac{5 W x}{16}
$$

At $x=0 ; \quad M_{B}=0 \Rightarrow$ Moment at propped end is zero.
At $x=\frac{L}{2} ; \quad \quad M_{C}=\frac{5 W L}{32}$

For CA:

$$
M_{x}=\frac{5 W x}{16}-W\left(x-\frac{L}{2}\right)
$$

At $x=\frac{L}{2} ; \quad M_{C}=\frac{5 W L}{32}$

At $x=L ; \quad M_{A}=-\frac{3 W L}{16}$
$\mathrm{BM}_{x x}=0$

$$
\begin{aligned}
\frac{5 W x}{16} & =W x-\frac{W L}{2} \\
x & =\frac{8 L}{11}
\end{aligned}
$$

(From prop end)
\therefore The point of contraflexure is at $\left(L-\frac{8 L}{11}\right)=\frac{3}{11}$ from fixed end.
24. (a)

We know deflection at free end for the case given in question,

$$
y=\frac{w l_{1}^{4}}{8 E I}+\frac{w l_{1}^{3}}{6 E I}\left(l-l_{1}\right)
$$

where $l=2.5 \mathrm{~m}, l_{1}=1.5 \mathrm{~m}, w=10 \mathrm{kN} / \mathrm{m}=10 \mathrm{~N} / \mathrm{mm}$

$$
\begin{aligned}
y & =\frac{10\left[1.5 \times 10^{3}\right]^{4}}{8 \times 1.9 \times 10^{12}}+\frac{10\left[1.5 \times 10^{3}\right]^{3}}{6 \times 1.9 \times 10^{12}} \times[2.5-1.5] \times 10^{3} \\
& =6.29 \mathrm{~mm} \simeq 6.3 \mathrm{~mm}
\end{aligned}
$$

25. (b)

Since section is symmetric about $x-x$ and $y-y$, therefore centre of section will lie on the geometrical centroid of section.
The semi-circular grooves may be assumed together and consider one circle of diameter 60 mm .

So,

$$
\begin{aligned}
I_{x x} & =\frac{80 \times(100)^{3}}{12}-\frac{\pi}{64}(60)^{4} \\
& =6.03 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Now for shear stress at neutral axis, consider the area above the neutral axis,

$$
\begin{aligned}
A \bar{y} & =[80 \times 50 \times 25]-\frac{\pi}{2}(30)^{2} \times \frac{4 \times 30}{3 \pi} \\
& =100000-18000=82000 \mathrm{~mm}^{3} \\
b & =20 \mathrm{~mm}
\end{aligned}
$$

$$
\text { So, } \quad \begin{aligned}
\tau & =\frac{V A \bar{y}}{I b}=\frac{20 \times 10^{3} \times 82000}{6.03 \times 10^{6} \times 20} \\
& =13.60 \mathrm{MPa}
\end{aligned}
$$

26. (c)
(i) Force on shaded area $=\frac{f_{\max }}{y_{\max }} A y$
where, A is area of shaded portion, y is distance of centroid of shaded area from NA

$$
A y=5 \times 5 \times(5+2.5)=187.5 \mathrm{~cm}^{3}
$$

So, \quad Force $=\frac{80}{10} \times 187.5=1500 \mathrm{~kg}$
(ii) Moment of this force about the neutral axis

$$
M=\frac{f_{\max }}{y_{\max }} I_{o}
$$

($I_{\mathrm{o}}=$ Moment of inertia of shaded area about neutral axis)

$$
I_{\mathrm{o}}=\frac{5 \times 5^{3}}{12}+5 \times 5 \times(7.5)^{2}=\frac{4375}{3} \mathrm{~cm}^{4}
$$

So, $\quad M=\frac{80}{10} \times \frac{4375}{3}=11666.67 \mathrm{~kg} \mathrm{~cm}$
27. (c)

$$
U=\frac{P^{2} L}{2 A E} \quad \text { (For axially loaded bar) }
$$

$L_{1}=10 \mathrm{~cm}, L_{2}=20 \mathrm{~cm}, d_{1}=2 \mathrm{~cm}$ and $d_{2}=4 \mathrm{~cm}$

$$
\begin{aligned}
U_{A} & =\frac{P^{2} L_{1}}{2 A_{1} E}+\frac{P^{2} L_{2}}{2 A_{2} E} \\
U_{B} & =\frac{P^{2} L_{2}}{2 A_{1} E}+\frac{P^{2} L_{1}}{2 A_{2} E} \\
\therefore \quad \frac{U_{B}}{U_{A}} & =\frac{\frac{L_{2}}{A_{1}}+\frac{L_{1}}{A_{2}}}{\frac{L_{1}}{A_{1}}+\frac{L_{2}}{A_{2}}} \\
& =\frac{L_{1} d_{1}^{2}+L_{2} d_{2}^{2}}{L_{1} d_{2}^{2}+L_{2} d_{1}^{2}} \\
& =\frac{10 \times 2^{2}+20 \times 4^{2}}{10 \times 4^{2}+20 \times 2^{2}}=\frac{3}{2}=1.5
\end{aligned}
$$

28. (b)

$$
\begin{aligned}
R_{A} & =R_{B}=\frac{1}{2}(2 W+10 w)=W+5 w \\
& =15 w
\end{aligned}
$$

$$
(W=10 w)
$$

Now
29. (c)

$$
\begin{aligned}
& \text { C } 2 \mathrm{~m} \\
& R_{A}+R_{B}=0 \\
& \Sigma M_{A}=0 \\
& \Rightarrow \quad R_{B} \times 5=15 \\
& R_{B}=3 \mathrm{kN} \\
& R_{A}=-3 \mathrm{kN}
\end{aligned}
$$

Now the for SFD will be as shon below.

$$
\begin{aligned}
& \underbrace{\text { N }}_{C} \\
& M_{E}=R_{A} \times 5-W(a+5)-w \times 5 \times 2.5=0 \\
& \Rightarrow \quad 15 w \times 5-10 w(a+5)-12.5 w=0 \\
& \Rightarrow \quad 75-10 a-50-12.5=0 \\
& \Rightarrow \quad 12.5=10 a \\
& \Rightarrow \quad a=1.25 \mathrm{~m}
\end{aligned}
$$

30. (b)

$$
\text { Total load }=2\left[\frac{1}{2}\left(\frac{L}{2}\right) \times w_{0}\right]=\frac{w_{0} L}{2}
$$

By symmetry, $\quad R_{1}=R_{2}=\frac{1}{2} \times$ Total load
$\Rightarrow \quad R_{1}=R_{2}=\frac{w_{0} L}{4}$
Bending moment at B,

$$
\begin{aligned}
\left(M_{B}\right) & =R_{1} \times \frac{L}{2}-\frac{1}{2} w_{0} \times \frac{L}{2} \times \frac{2}{3}\left(\frac{L}{2}\right) \\
& =\frac{w_{0} L}{4} \times \frac{L}{2}-\frac{w_{0}}{2} \times \frac{L}{2} \times \frac{2}{3}\left(\frac{L}{2}\right) \\
& =\frac{w_{0} L^{2}}{8}-\frac{w_{0} L^{2}}{12}=\frac{w_{0} L^{2}}{24}
\end{aligned}
$$

