- C	LAS	5 TE	ST -			S.N	o.:01 _.	_ IG_CE_A+C_230323	
MADE EASY									
India's Best Institute for IES. GATE & PSUs									
Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
STRENGTH OF MATERIALS									
	51								
	-		CIV	/IL EN			١G		
	-		CIV Da	/IL EN te of Te	NGIN st:23	JEERI 3/03/202	NG 23		
	-		CIV Da	/IL EN	JGIN st:23	JEERII 3/03/202	NG 23		
AN	SWER K	(EY >	CIV Da	/IL EN	JGIN st:23	JEERIN 3/03/202	NG 23		
AN 1.	SWER k	⟨EY ⟩ 7.	CIV Da	/IL EN te of Te	JGIN st : 23	JEERIN 3/03/202 19.	NG 23 (c)	 25. (b)	
AN 1. 2.	SWER (a) (b)	(EY) 7. 8.	(b) (c)	/IL EN te of Te 13. 14.	JGIN st : 23 (a) (c)	JEERIN 3/03/203 19. 20.	VG 23 (c) (d)	 25. (b) 26. (c)	
AN 1. 2. 3.	SWER k (a) (b) (c)	(EY) 7. 8. 9.	(b) (c) (b)	/IL EN te of Te 13. 14. 15.	JGIN st : 23 (a) (c) (b)	SICERIN 19. 20. 21.	VG 23 (c) (d) (c)	25. (b) 26. (c) 27. (c)	
AN 1. 2. 3. 4.	SWER k (a) (b) (c) (a)	(EY) 7. 8. 9. 10.	(b) (c) (d)	/IL EN te of Te 13. 14. 15. 16.	JGIN st : 23 (a) (c) (b) (c)	SICERIN SICO3/203 19. 20. 21. 22.	VG 23 (c) (d) (c) (c)	25. (b) 26. (c) 27. (c) 28. (b)	
AN 1. 2. 3. 4.	(a) (b) (c) (a) (a)	(EY) 7. 8. 9. 10. 11.	(b) (c) (d) (a)	/IL EN te of Te 13. 14. 15. 16. 17.	JGIN st : 23 (a) (c) (b) (c) (c)	SICERIN SICO3/202 19. 20. 21. 22. 23.	VG 23 (c) (d) (c) (c) (c)	25. (b) 26. (c) 27. (c) 28. (b) 29. (c)	

DETAILED EXPLANATIONS

2. (b)

We know deflection of spring,

$$\delta = \frac{64WR^3n}{Gd^4}$$

where, W = 100 N, R = 25 mm, n = 12, G = 80 GPa, d = 5 mm

So,
$$\delta = \frac{64 \times 100 \times (25)^3 \times 12}{80 \times 10^3 \times 5^4} = 24 \text{ mm}$$

3. (c)

$$d = 2 \text{ mm}$$

$$\sigma_{b(\text{max})} = 80 \text{ N/mm}^2$$

$$E = 100 \times 10^3 \text{ N/mm}^2$$

Distance between the neutral axis of wire and its extreme fibre

$$y = \frac{2}{2} = 1 \text{ mm}$$

So, minimum radius of the drum

$$R = \frac{y}{\sigma_{b(\text{max})}} E$$

$$= \frac{1}{80} \times 100 \times 10^{3}$$

$$= 1.25 \times 10^{3} \text{ mm} = 1.25 \text{ m}$$

4. (a)

Internal hinge in given beam will become hinged support in conjugate beam.

5. (a)

$$\tau_{\max} = \frac{16}{\pi D^3} \sqrt{M^2 + T^2}$$
$$= \left[\frac{16}{\pi (100)^3} \sqrt{(8)^2 + (6)^2}\right] \times 10^6$$
$$= \frac{16}{\pi} \times \frac{10 \times 10^6}{10^6} = 50.93 \text{ MPa}$$

6. (a)

Taking moments about B,

$$R_A = \left(\frac{6}{8}\right) \times 5 + \frac{3}{8} \times 4 + 3 \times \frac{2}{8}$$
$$= 3.75 + 1.5 + 0.75 = 6t$$

Taking moment about A,

$$R_B = (5+3+2\times2) - R_A$$
$$= 12t - 6t = 6t$$
$$\frac{R_A}{R_B} = \frac{6t}{6t} = 1$$

7. (b)

...

Due to combined effect of torque and shear force, inner surface will have more shear stress compared to outer surface.

On dividing a spring into *m* parts, the no. of turns on each spring will be *m* times less. Since stiffness is inversely proportional to no. of turns, the stiffness will become *mk*.

8. (c)

$$Z = \frac{I}{y} = \frac{225 \times 10^{6}}{\frac{300}{2}} = 1.5 \times 10^{6} \text{ mm}^{3}$$
$$M = \sigma_{\text{max}} \times Z = 120 \times 1.5 \times 10^{6}$$
$$= 180 \times 10^{6} \text{ N-mm}$$
$$M_{\text{max}} = M = \frac{wl^{2}}{8}$$
$$\frac{wl^{2}}{8} = 180 \times 10^{6} = \frac{w(4 \times 10^{3})^{2}}{8}$$
$$w = \frac{180}{2} = 90 \text{ N/mm} = 90 \text{ kN/m}$$

9.

So

 \Rightarrow

(b)

Flitched beam has a composite section made of two or more materials joined together in such a manner that they behave as a unit piece and each material bends to the same radius of curvature. The total moment of resistance of a flitched beam is equal to the sum of the moments of resistance of individual sections.

10. (d)

By stress invariant law,	$\sigma_x + \sigma_y = \sigma_1 + \sigma_2$
\Rightarrow	$32 + (-10) = 40 + \sigma_2$
\Rightarrow	$\sigma_2 = -18 \text{ MPa}$

11. (a)

Direct longitudinal stress,

$$\sigma_x = \frac{90 \times 10^3}{30 \times 30} = 100 \text{ MPa}$$
 (Compressive)

$$\in_{x} = \frac{1}{E} \left[-\sigma_{x} + \nu \left(\sigma_{y} + \sigma_{z} \right) \right]$$
 ...(i)

$$\epsilon_{y} = \epsilon_{z} = \frac{1}{E} \left[-\sigma_{y} + \nu (\sigma_{x} + \sigma_{z}) \right] = 0 \qquad \dots (ii)$$

$$\sigma_{y} = \sigma_{z}$$

As we know

So,

Also on solving equation (ii)

$$\sigma_{y} = \frac{v}{1-v}\sigma_{x} = \frac{0.25}{1-0.25}\sigma_{x} = \frac{\sigma_{x}}{3}$$

$$\in_{x} = \frac{1}{E} \Big[-\sigma_{x} + v (\sigma_{y} + \sigma_{z}) \Big] = \frac{1}{E} \Big[-\sigma_{x} + v \times 2\sigma_{y} \Big]$$

$$= \frac{1}{E} \Big[-\sigma_{x} + 0.25 \times 2 \times \frac{\sigma_{x}}{3} \Big] = \frac{1}{E} \Big[-\sigma_{x} + \frac{0.5\sigma_{x}}{3} \Big]$$

$$= \frac{1}{100 \times 10^{3}} \Big[-100 + \frac{0.5 \times 100}{3} \Big] = \frac{1}{100 \times 10^{3}} \Big[-\frac{250}{3} \Big]$$

$$\delta_{l} = l \in_{x} = \frac{1}{100 \times 10^{3}} \Big[-\frac{250}{3} \Big] \times 100$$

$$= 0.083 \text{ mm} \qquad \text{(Reduction in length)}$$

12. (a)

Strain energy stored in hollow shaft,
$$U = \frac{\tau_{\text{max}}^2}{4G} \left[\frac{D^2 + d^2}{D^2} \right] V$$

= $\frac{80^2}{4 \times 100 \times 10^3} \left[\frac{80^2 + 60^2}{80^2} \right] \times 10^6 = \frac{10000 \times 10^6}{4 \times 10^5} = 2.5 \times 10^4 \text{ N-mm}$
= 25 N-m

13. (a)

Bending moment at *A* and *B* is zero. It increases in the form of cubic curve. Maximum value of bending moment in beam AB occurs where shear force changes sign.

x

Now we know

$$R_A = \frac{wl}{3}$$
$$R_B = \frac{wl}{6}$$

Let at point x from B, shear force will be zero

$$V = R_{B} - \frac{1}{2} \times \frac{w}{l} x$$

$$\Rightarrow \qquad \frac{wl}{6} - \frac{wx^{2}}{2l} = 0$$

$$\Rightarrow \qquad x = \frac{l}{\sqrt{3}}$$

www.madeeasy.in

2 7

So, bending moment at $x = \frac{l}{\sqrt{3}}$ from *B* is $M_{\text{max}} = R_F x - \frac{1}{2} \times \frac{w}{l} x \cdot x \times \frac{x}{3} = \frac{wl}{6} \times \frac{l}{\sqrt{3}} - \frac{1}{2} \times \frac{w}{l} \times \frac{1}{3} \times \frac{l^3}{(\sqrt{3})^3}$ $= \frac{wl^2}{6\sqrt{3}} - \frac{wl^2}{6\times 3\sqrt{3}} = \frac{wl^2}{6\sqrt{3}} - \frac{wl^2}{18\sqrt{3}} = \frac{2wl^2}{18\sqrt{3}}$ $= \frac{wl^2}{9\sqrt{3}}$

14. (c)

We know that area of triangular beam section

$$A = \frac{\sqrt{3}}{4}a^{2}$$
 for equilateral triangle
$$= \frac{\sqrt{3}}{4}(100)^{2} = 2500\sqrt{3} \text{ mm}^{2}$$

Average shear stress across the section

$$\tau_{\rm avg} = \frac{F}{A} = \frac{13 \times 10^3}{2500\sqrt{3}} = 3 \text{ MPa}$$

So maximum shear stress for triangular section

$$\begin{aligned} \tau_{\max} &= 1.5 \ \tau_{avg} \\ &= 1.5 \times 3 = 4.5 \ \text{MPa} \end{aligned}$$

15. (b)

Let us split up the trapezoidal load into a uniformly distributed load (w_1) of 50 N/mm and a triangular load (w_2) of 100 N/mm at A to zero at B.

F

Now slope at free end

$$\theta_B = \frac{w_1 l^3}{6EI} + \frac{w_2 l^3}{24EI} = \left[\frac{50 \times (2 \times 10^3)^3}{6 \times 10^{13}} + \frac{100 \times (2 \times 10^3)^3}{24 \times 10^{13}}\right] \text{rad}$$
$$= 0.0067 + 0.0033 = 0.01 \text{ rad}$$

16. (c)

Free expansion of rod = $\delta l = \alpha l \Delta t = 12 \times 10^{-6} \times 20 \times 10^{3} (65 - 20) = 10.8 \text{ mm}$ When the rod is permitted to expand by 5.8 mm in this case, expansion prevented = 10.8 - 5.8

= 5 mm
∴ Strain prevented =
$$\frac{\text{Expansion Prevented}}{\text{Original length}}$$

= $\frac{5}{20 \times 10^3} = \frac{1}{4000}$
∴ Thermal stress = Strain prevented × E
= $\frac{1}{4000} \times 200 \times 10^3 = 50 \text{ MPa}$

© Copyright: MADE EASY

17. (c)

:..

:..

From bending equation, $\frac{f}{y} = \frac{f_{max}}{y_{max}}$

$$f = \frac{f_{max}}{y_{max}} \times y$$

Force on shaded area = $\frac{f_{max}}{y_{max}} \times \Sigma A y$
$$= \frac{f_{max}}{y_{max}} (A\overline{y})$$

[where A is shaded area, \overline{y} = distance of centroid of shaded area from N.A.]

$$= \frac{90}{12} \times \left[\frac{15}{2} \times 12\right] \times \frac{2}{3} \times 12 = 5400 \text{ kg}$$

18. (b)

$$\sigma_{x} = \frac{2.5 \times 10^{3}}{25} = 100 \text{ MPa (T)}$$

$$\sigma_{y} = \frac{1250}{25} = 50 \text{ MPa (T)}$$

$$\sigma_{z} = \frac{625}{25} = 25 \text{ MPa (T)}$$

$$\tau_{xy} = \frac{1000}{25} = 40 \text{ MPa}$$

$$\sigma_{1,2} = \frac{\sigma_{x} + \sigma_{y}}{2} \pm \frac{1}{2} \sqrt{(\sigma_{x} - \sigma_{y})^{2} + 4\tau_{xy}^{2}}$$

$$= \frac{100 + 50}{2} \pm \frac{1}{2} \sqrt{(100 - 50)^{2} + 4(40)^{2}}$$

$$\sigma_{1} = 122.17 \text{ MPa}$$

$$\sigma_{2} = 27.83 \text{ MPa}$$

$$\sigma_{3} = 25 \text{ MPa}$$

Now according to maximum shear stress theory

$$\begin{aligned} \left(\tau_{abs}\right)_{\max} &\leq \frac{\sigma_y}{2(\text{FOS})} \\ \left\{\frac{\left|\sigma_1 - \sigma_2\right|}{2}, \frac{\left|\sigma_2 - \sigma_3\right|}{2}, \frac{\left|\sigma_3 - \sigma_1\right|}{2}\right\}_{\max} &= \frac{\sigma_y}{2(\text{FOS})} \\ \frac{\sigma_1 - \sigma_3}{2} &= \frac{\sigma_y}{2(\text{FOS})} \\ \text{FOS} &= \frac{75}{122.17 - 25} = 0.77 \end{aligned}$$

www.madeeasy.in

19. (c)

We know that at internal hinge, deflection will be same at just left and right of hinge. So,

$$A | \underbrace{k_{c}}_{R_{c}} = \underbrace{k_{c}L^{3}}_{B} | \underbrace{k_{c}}_{R_{c}} = \underbrace{k_{c}}_{B} | \underbrace{k_{c}}_{R_{c}} = \underbrace{k_{c}}_{R_{c}} | \underbrace{k_{c}}_{R_{c}} = \underbrace{k_{c}}_{R_$$

So from eq. (i) and (ii)

$$\frac{wL^4}{8EI} - \frac{R_c L^3}{3EI} = \frac{R_c L^3}{3EI}$$
$$\frac{2R_c L^3}{3EI} = \frac{wL^4}{8EI}$$
$$R_c = \frac{3}{16}wL$$

20. (d)

 \Rightarrow

 \Rightarrow

:..

The deformation of the beam will be as shown below.

Now ΔC_1 is produced due to deflection of *C* as caused due to deformation of *AB*, $\Delta C_1 = \theta_B (BC) = \theta_B a$

$$\theta_{\rm B} = \frac{M_{BA}l}{3EI} = \frac{Pal}{3EI}$$
$$\Delta C_1 = \frac{Pala}{3EI} = \frac{Pa^2l}{3EI}$$

 ΔC_2 is produced due to deformation of *BC*

So total deflection at $C_{,\Delta}C = \Delta C_{1} + \Delta C_{2}$

$$= \frac{Pa^2l}{3EI} + \frac{Pa^3}{3EI}$$

21. (c)

Modulus of section for both timber sections

$$Z_T = 2\left[\frac{60 \times (200)^2}{6}\right] = 8 \times 10^5 \,\mathrm{mm^3}$$

Similarly modulus of section for the steel section

$$Z_{S} = \frac{15 \times (200)^{2}}{6} = 10^{5} \text{mm}^{3}$$

Now, moment of resistance of timber section,

$$M_T = Z_T \cdot \sigma_T$$

= 8 × 10⁵ × 5
= 4 × 10⁶ N-mm = 4 kN-m

Similarly,

Moment of resistance of steel section,

$$M_S = Z_S \cdot \sigma_S$$

= 10⁵ × 100
= 10 × 10⁶ N-mm
= 10 kNm

Total moment of resistance of the beam

$$M = M_S + M_T = 10 + 4 = 14 \text{ kNm}$$

22. (c)

Radius,

Tangential stress,

$$= 100 \sin 60$$
$$= 100 \times \frac{\sqrt{3}}{2}$$
$$= 50\sqrt{3}$$

23. (c)

Since end *B* is propped Net deflection at *B* is zero.

$$\Rightarrow \qquad (\delta_{B}\downarrow)_{W} = (\delta_{B}\uparrow)_{R_{B}}$$

$$\frac{W\left(\frac{L}{2}\right)^{3}}{3EI} + \frac{W\left(\frac{L}{2}\right)^{2}}{2EI} \times \frac{L}{2} = \frac{R_{B}L^{3}}{3EI}$$

$$\frac{WL^{3}}{24EI} + \frac{WL^{3}}{16EI} = \frac{R_{B}L^{3}}{3EI}$$

$$\frac{2WL^{3} + 3WL^{3}}{48EI} = \frac{R_{B}L^{3}}{3EI}$$

$$R_{B} = \frac{5W}{16}$$

$$R_{A} = W - R_{B} = W - \frac{5W}{16}$$

$$= \frac{11W}{16}$$

Bending moment diagram:

For BC: $M_x = R_B x = \frac{5Wx}{16}$ At x = 0; $M_B = 0 \Rightarrow$ Moment at propped end is zero.At $x = \frac{L}{2}$; $M_C = \frac{5WL}{32}$ For CA: $M_x = \frac{5Wx}{16} - W\left(x - \frac{L}{2}\right)$ At $x = \frac{L}{2}$; $M_C = \frac{5WL}{32}$

At
$$x = L$$
; $M_A = -\frac{3WL}{16}$
 $BM_{xx} = 0$
 $\frac{5Wx}{16} = Wx - \frac{WL}{2}$
 $x = \frac{8L}{11}$ (From prop end)
 \therefore The point of contraflexure is at $\left(L - \frac{8L}{11}\right) = \frac{3}{11}$ from fixed end.

24. (a)

We know deflection at free end for the case given in question,

$$y = \frac{wl_1^4}{8EI} + \frac{wl_1^3}{6EI}(l - l_1)$$

where l = 2.5 m, $l_1 = 1.5 \text{ m}$, w = 10 kN/m = 10 N/mm

$$y = \frac{10[1.5 \times 10^3]^4}{8 \times 1.9 \times 10^{12}} + \frac{10[1.5 \times 10^3]^3}{6 \times 1.9 \times 10^{12}} \times [2.5 - 1.5] \times 10^3$$

= 6.29 mm \approx 6.3 mm

25. (b)

Since section is symmetric about *x*-*x* and *y*-*y*, therefore centre of section will lie on the geometrical centroid of section.

The semi-circular grooves may be assumed together and consider one circle of diameter 60 mm.

So,
$$I_{xx} = \frac{80 \times (100)^3}{12} - \frac{\pi}{64} (60)^4$$

=

$$6.03 \times 10^{6} \text{ mm}^{4}$$

Now for shear stress at neutral axis, consider the area above the neutral axis,

$$A\overline{y} = [80 \times 50 \times 25] - \frac{\pi}{2} (30)^2 \times \frac{4 \times 30}{3\pi}$$

= 100000 - 18000 = 82000 mm³
b = 20 mm

So,

$$\tau = \frac{VA\overline{y}}{Ib} = \frac{20 \times 10^3 \times 82000}{6.03 \times 10^6 \times 20}$$
$$= 13.60 \text{ MPa}$$

26. (c)

(i) Force on shaded area =
$$\frac{f_{\text{max}}}{y_{\text{max}}}Ay$$

where, *A* is area of shaded portion, *y* is distance of centroid of shaded area from NA $Ay = 5 \times 5 \times (5 + 2.5) = 187.5 \text{ cm}^3$

So, Force =
$$\frac{80}{10} \times 187.5 = 1500 \text{ kg}$$

(ii) Moment of this force about the neutral axis

$$M = \frac{f_{\max}}{y_{\max}} I_o$$

 $(I_o = Moment of inertia of shaded area about neutral axis)$

$$I_{o} = \frac{5 \times 5^{3}}{12} + 5 \times 5 \times (7.5)^{2} = \frac{4375}{3} \text{ cm}^{4}$$

So,

$$M = \frac{80}{10} \times \frac{4375}{3} = 11666.67 \text{ kg cm}$$

27. (c)

:.

$$U = \frac{P^2 L}{2AE}$$
 (For axially loaded bar)

 $L_1 = 10 \text{ cm}, L_2 = 20 \text{ cm}, d_1 = 2 \text{ cm} \text{ and } d_2 = 4 \text{ cm}$

$$U_{A} = \frac{P^{2}L_{1}}{2A_{1}E} + \frac{P^{2}L_{2}}{2A_{2}E}$$

$$U_{B} = \frac{P^{2}L_{2}}{2A_{1}E} + \frac{P^{2}L_{1}}{2A_{2}E}$$

$$\frac{U_{B}}{U_{A}} = \frac{\frac{L_{2}}{A_{1}} + \frac{L_{1}}{A_{2}}}{\frac{L_{1}}{A_{1}} + \frac{L_{2}}{A_{2}}}$$

$$= \frac{L_{1}d_{1}^{2} + L_{2}d_{2}^{2}}{L_{1}d_{2}^{2} + L_{2}d_{1}^{2}}$$

$$= \frac{10 \times 2^{2} + 20 \times 4^{2}}{10 \times 4^{2} + 20 \times 2^{2}} = \frac{3}{2} = 1.5$$

28. (b)

$$R_{A} = R_{B} = \frac{1}{2} (2W + 10w) = W + 5w$$

= 15w (W = 10 w)

Now

$$\begin{array}{c}
\bigvee \\
C \\
a \\
R_A \\
F_A \\$$

 $\Sigma M_A = 0$ $\Rightarrow \qquad R_B \times 5 = 15$ $\Rightarrow \qquad R_B = 3 \text{ kN}$

$$R_A = -3 \text{ kN}$$

Now the for SFD will be as shon below.

India's Best Institute for IES, GATE & PSUs

By symmetry,

(b) 30.

 \Rightarrow

Total load =
$$2\left[\frac{1}{2}\left(\frac{L}{2}\right) \times w_0\right] = \frac{w_0L}{2}$$

By symmetry, $R_1 = R_2 = \frac{1}{2} \times \text{Total load}$
 $\Rightarrow \qquad R_1 = R_2 = \frac{w_0L}{4}$
Bending moment at B ,
 $(M_B) = R_1 \times \frac{L}{2} - \frac{1}{2}w_0 \times \frac{L}{2} \times \frac{2}{3}\left(\frac{L}{2}\right)$
 $= \frac{w_0L}{4} \times \frac{L}{2} - \frac{w_0}{2} \times \frac{L}{2} \times \frac{2}{3}\left(\frac{L}{2}\right)$
 $= \frac{w_0L^2}{8} - \frac{w_0L^2}{12} = \frac{w_0L^2}{24}$

