

DETAILED EXPLANATIONS

1. (b)

Mixture of abrasive and carrier gas will come out from the nozzle

$$
\begin{aligned}
Q & =A \times v \\
& =\frac{\pi}{4} \times(0.1)^{2} \times 200 \times 100 \\
& =157.08 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

2. (a)

$$
\text { Cone height }=\frac{D / 2}{\tan \frac{\alpha}{2}}=\frac{5}{\tan 60^{\circ}}=2.886 \mathrm{~mm}
$$

3. (b)

$$
\text { cutting velocity, } \begin{aligned}
(V) & =\frac{\pi d N}{1000} \\
71.5 & =\frac{\pi d \times 350}{1000} \\
\text { diameter }(d) & =65.026 \mathrm{~mm}
\end{aligned}
$$

4. (a)

In USM the variation of material removal rate (MRR) with respect to the volume concentration of abrasive in water slurry is governed by:

$$
\operatorname{MRR} \propto \frac{c^{1 / 4} A^{1 / 4} F^{3 / 4} a_{0}^{3 / 4} d_{g} f}{\sigma_{w}^{3 / 4}(1+\lambda)^{3 / 4}} \mu^{3 / 4}
$$

Volume concentration of abrasive slurry, C
5. (a)

A negative rake angle always leads to higher cutting force than what is produced with a cutting point having positive rake angle. This further illustrates that at low grinding velocity this difference in grinding force is more pronounced. It is interesting to note that the difference is narrowed at a high grinding velocity and the grinding force becomes virtually independent to the rake angle. This is one of the reasons of conducting grinding at a very high velocity in order to minimize the influence of negative rake angle.
6. (c)

$$
\begin{aligned}
\text { Axial feed, } F & =\frac{3000 \mathrm{~mm}}{30 \mathrm{~s}}=100 \mathrm{~mm} / \mathrm{s}=6000 \mathrm{~mm} / \mathrm{min} \\
\text { We know, Axial feed, } F & =\pi d N \sin \theta \\
6000 & =\pi \times 200 \times 500 \times \sin \theta \\
\theta & =1.094^{\circ} \simeq 1.09^{\circ}
\end{aligned}
$$

7. (b)
8. EDM has the lowest specific power requirement and can achieve sufficient accuracy.
9. ECM has the highest metal removal rate.
10. USM and AJM have low MRR and combined with high tool wear, are used for non-metal cutting
11. LBM and EBM have high penetration rates with low MRR and, therefore, are commonly used for micro drilling, sheet cutting.
12. (a)

USM is used for machining of hard, brittle and non-conductive materials.
9. (c)

Glazing is the phenomenon in which the grinding wheel becomes dull due to wearing out of sharp edges of grit on continuous machining.
10. (b)

$$
V=\frac{N L(1+\mathrm{m})}{1000}=\frac{20 \times 300\left(1+\frac{3}{4}\right)}{1000}=10.5 \mathrm{~m} / \mathrm{min}
$$

11. (a)

Given : Depth $(d)=5 \mathrm{~mm}, f_{m}=2 \mathrm{~mm} / \mathrm{s}$

$$
\text { Width of cut }=\text { Diameter of the tool }
$$

$\Rightarrow \quad w=40 \mathrm{~mm}$
Material removal rate $(\mathrm{MRR})=w d f_{m}$

$$
=40 \times 5 \times 2=400 \mathrm{~mm}^{3} / \mathrm{s}
$$

$$
\begin{aligned}
\text { Power required } & =\frac{(\text { Specific energy }) \times M R R}{\eta}=\frac{8.5 \times 400}{0.5} \\
& =6.8 \mathrm{~kW}
\end{aligned}
$$

12. (d)

Time taken for cutting,

$$
t=\frac{L}{V_{c}}=\frac{150 \times 60}{200}=45 \mathrm{sec}
$$

13. (b)

Total material removal rate,

$$
\begin{aligned}
\mathrm{MRR} & =\frac{\pi}{4} D_{1}^{2} f_{m}+\frac{\pi}{4} D_{2}^{2} f_{m} \\
& =\frac{\pi}{4} f_{m}\left(D_{1}^{2}+D_{2}^{2}\right) \\
\Rightarrow \quad \frac{\pi}{4} \times\left(13^{2}+19^{2}\right) \times f_{m} & =24580 \\
f_{m} & =59.049 \mathrm{~mm} / \mathrm{min}
\end{aligned}
$$

Compulsory approach for drill $1, x_{1}=\frac{D_{1} / 2}{\tan \frac{\alpha}{2}}=\frac{13 / 2}{\tan 59^{\circ}}=3.905 \mathrm{~mm}$
Compulsory approach for drill 2, $x_{2}=\frac{D_{2} / 2}{\tan \frac{\alpha}{2}}=\frac{19 / 2}{\tan 59^{\circ}}=5.708 \mathrm{~mm}$
Time required to drill hole $1=\frac{L+x_{1}}{f_{m}}=\frac{40+3.905}{59.049} \times 60=44.612$ seconds
Time required to drill hole $2=\frac{L+x_{2}}{f_{m}}=\frac{40+5.708}{59.049} \times 60=46.44$ seconds

$$
=46.44 \text { seconds }
$$

As both the drills are working simultaneously, so the time for the complete operation is 46.44 seconds.
14. (b)

Cutting time per stroke $=\frac{1000 \mathrm{~mm}}{6000 \mathrm{~mm} / \mathrm{min}}=\frac{1}{6} \mathrm{~min}$
Return time $=\frac{1}{2}$ of cutter time $=\frac{1}{12}$ min per stroke
Total time per stroke $=\frac{1}{6}+\frac{1}{12}=\frac{1}{4} \mathrm{~min}$
Number of stroke $=\frac{500}{2}=250$
$\therefore \quad$ Total time $=\frac{1}{4} \times 250=62.5 \mathrm{~min}$
15. (a)

We know, MRR is given by,

$$
\begin{aligned}
& \operatorname{MRR}=\frac{A I}{\rho V F} \\
& \text { So, } \quad I=\frac{(M R R) \times \rho V F}{A} \\
& \therefore \quad I=\frac{(2.5 / 60) \times 8 \times 2 \times 96500}{56}=1148.81 \mathrm{Amp} .
\end{aligned}
$$

16. (d)

In AJM process, the MRR is proportional to,

$$
M R R \propto Q d^{3}
$$

where,

$$
Q=\text { Flow rate of abrasives }
$$

$d=$ mean diameter
So, $\quad \frac{10}{M R R^{\prime}}=\frac{Q d^{3}}{2 Q \times(d / 2)^{3}}$

$$
M R R^{\prime}=10 \times \frac{2}{8}=2.5 \mathrm{~mm}^{3} / \mathrm{s}
$$

17. (d)

$$
\begin{aligned}
& V_{c}
\end{aligned}=\frac{\pi D N}{1000}, ~ \begin{aligned}
N & =\frac{1000 \times 5}{\pi \times 50}=31.83 \mathrm{rpm} \\
\text { Now, } \quad T_{c} & =\frac{L_{c}}{f N} \times \text { Number of passes } \\
& =\frac{150}{1 \times 31.83} \times 3=14.14 \text { minutes }
\end{aligned}
$$

18. (c)
19. (b)

$$
\begin{aligned}
\mathrm{MRR} & =\frac{\pi}{4} D^{2} f N \\
D & =25 \mathrm{~mm} \quad f=0.25 \mathrm{~mm} / \mathrm{rev} \\
V & =\frac{\pi D N}{1000} \\
\Rightarrow \quad 30 & =\frac{\pi \times 25 \times N}{1000} \\
N & =381.972 \mathrm{rpm} \\
\mathrm{MRR} & =\frac{\pi}{4} \times 25^{2} \times 0.25 \times 381.972 \mathrm{~mm}^{3} / \mathrm{min} \\
& =46874.9 \mathrm{~mm}^{3} / \mathrm{min}=0.78 \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

20. (a)

Saw has 12 teeth per meter

$$
\text { Saw speed }=150 \mathrm{~m} / \mathrm{min}
$$

So, Number of teeth engaging per minute $=\frac{12}{(\text { metre })} \times 150 \times\left(\frac{\text { metre }}{\text { min }}\right)$
= 1800 Teeth/minute

21. (c)

$$
\begin{aligned}
V & =70 \mathrm{~m} / \mathrm{min} \\
D & =50 \mathrm{~mm} \\
f & =0.25 \mathrm{~mm} / \mathrm{rev} \\
L & =60 \mathrm{~mm}
\end{aligned}
$$

Spindle speed,

$$
N=\frac{1000 \mathrm{~V}}{\pi D}=\frac{1000 \times 70}{\pi \times 50}=445.633 \mathrm{rev} / \mathrm{min}
$$

Breakthrough distance,

$$
\begin{aligned}
& A=\frac{50}{2 \tan 59^{\circ}} \\
& A=15.02 \mathrm{~mm}
\end{aligned}
$$

Total length of drill travel,

$$
\begin{aligned}
& L=60+15.02+3 \\
& L=78.02 \mathrm{~mm}
\end{aligned}
$$

Time for drilling the hole $=\frac{78.02}{0.25 \times 445.633}=0.7 \mathrm{~min}$

22. (c)

Power required in turning is given by

$$
\begin{aligned}
P & =\text { K.d.f. } V \\
V & =\frac{\pi D N}{1000}=\frac{\pi \times 50 \times 140}{1000}=21.99 \mathrm{~m} / \mathrm{min} \\
P & =\frac{1600 \times 3 \times 1 \times 21.99}{60} \\
P & =1.76 \mathrm{~kW}
\end{aligned}
$$

23. (b)

$$
\begin{aligned}
\text { Time/cut } & =\frac{\text { Number of double strokes } \times \text { time }}{\text { double stroke }} \\
& =\frac{B}{f} \times \frac{1}{10}=\frac{300}{0.2} \times \frac{1}{10}=150 \mathrm{~min}
\end{aligned}
$$

24. (a)

Chemical machining \rightarrow Corrosive reaction
Electro-chemical machining \rightarrow Ion displacement
Electro discharge machining \rightarrow Fusion and vaporization
Ultrasonic machining \rightarrow Erosion
25. (a)

$$
\begin{aligned}
t_{1} & =\frac{2 f}{N z} \sqrt{\frac{d}{D}} \\
t_{2} & =\frac{2 f}{N z} \sqrt{\frac{3 d}{3 D}} \\
\therefore \quad \% \text { change } t_{2}-t_{1} & =0
\end{aligned}
$$

26. (a)

$$
\text { Given: } \quad \begin{aligned}
N_{\min } & =35 \mathrm{rpm} \\
N_{\max } & =300 \mathrm{rpm} \\
n & =6
\end{aligned}
$$

$$
\text { Sped, ratio, } r=(n-1) \sqrt{\frac{N_{\max }}{N_{\min }}}=\sqrt[5]{\frac{300}{35}}=1.537
$$

$$
3^{\text {rd }} \text { spindle speed, } N_{3}=N_{1} r^{2}
$$

$$
=35(1.537)^{2}=82.66 \mathrm{rpm}
$$

27. (d)

$$
\text { Given, } \quad \begin{aligned}
Z & =10 \\
N & =100 \mathrm{rpm} \\
f & =50 \mathrm{~mm} / \mathrm{min}
\end{aligned}
$$

Feed per revolution, $f_{N}=\frac{50}{100}=0.5 \mathrm{~mm} / \mathrm{rev}$.
Feed per tooth, $f_{Z}=\frac{f_{N}}{Z}=\frac{0.5}{10}=0.05 \mathrm{~mm} /$ tooth
29. (d)

$$
\text { Given : } \begin{aligned}
N_{s}=200 \mathrm{rpm}, D_{S} & =1 \mathrm{~mm}, Z_{s}=2, p_{L}=4 \mathrm{~mm} \\
N_{S} \times p_{S} \times Z_{S} & =N_{L} \times p_{L} \times Z_{L} \times 4 \\
200 \times 1 \times 2 & =N_{L} \times 4 \\
N_{L} & =100 \mathrm{rpm}
\end{aligned}
$$

