	LASS T	es	<u>T</u>			S.No. : (_CE_NW_04 I - PERT	0819
Delhi	Noida Bhopa Web:	al Hyo	ndia's Best li	DE Institut	e for IES know Ir	dore Pune	SUs Bhubar	_	a Patna
			CIVIL	19	-2	020)		
			Date of	Tes	t:04/	/08/2019	>		
AN	ISWER KEY	>	CPM - P	ERT					
1.	(a)	7.	(c)	13.	(a)	19.	(b)	25.	(d)
2.	(a)	8.	(d)	14.	(d)	20.	(d)	26.	(c)
3.	(b)	9.	(a)	15.	(c)	21.	(c)	27.	(d)
4.	(a)	10.	(d)	16.	(c)	22.	(c)	28.	(a)
5.	(c)	11.	(c)	17.	(a)	23.	(d)	29.	(b)
6.	(a)	12.	(a)	18.	(d)	24.	(c)	30.	(a)

Detailed Explanations

4. (a)

The distribution curve for the time taken to complete each activity of a project resembles a β -distribution curve and the distribution curve for the time taken to complete entire project (consisting of several activities) in general resembles a normal distribution curve.

5. (c)

In A-O-N network, dummy activities are eliminated.

2 - 6, 1 - 6 and 3 - 6 are already established and hence need not be taken into the network.

7. (c)

Expected times of activities A and B respectively are

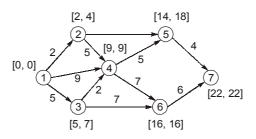
$$t_{EA} = \frac{4+6\times4+8}{6} = 6 \text{ days}$$
$$t_{EB} = \frac{5+5.5\times4+9}{6} = 6 \text{ days}$$
$$t_{EA} = t_{EB}$$

...

8. (d)

Gantt chart indicates comparison of actual progress with the scheduled progress.

9. (a)

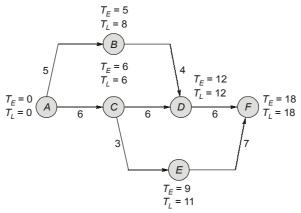

Arrow represents the activities and node represents the events.

11. (c)

Month	Demand	Procurement at	Withdrawal through	Balance	
		beginning of months	month	Resource	
1	0	0.2 × 50 = 10	0	10	
2	0	0.5 × 50 + 0.2 × 40 = 33	0	43	
3	50	$0.3 \times 50 + 0.5 \times 40 + 0.2 \times 60 = 47$	50	43 + 47 - 50 = 40	
4	40	$0.3 \times 40 + 0.5 \times 60 = 42$	40	40 + 42 - 40 = 42	
5	60	0.3 × 60 = 180	60	42 + 18 - 60 = 0	

: Maximum inventory is by the end of 2nd month which is 43 units.

12. (a)



13.	(a)
-----	-----

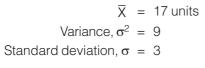
Days	Resources per day
8 - 11	8
11 - 16	8 + 6 = 14
16 - 19	6
19 - 20	6 + 7 = 13
20 - 22	6 + 7 + 9 = 22
22 - 24	7 + 9 = 16
24 - 28	7

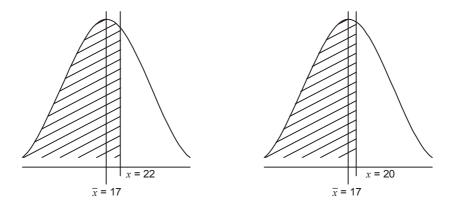
 $\therefore \frac{\text{Maximum resource needed per day}}{\text{Minimum resource needed per day}} = \frac{22}{6} = 3.67$

14. (d)

Total float = T_L for head event – T_E for tail event – duration of activity Total float of AB = 8 - 0 - 5 = 3 weeks Total float of CE = 11 - 6 - 3 = 2 weeks Free float = T_E for head event – T_E for tail event – Duration of activity Free float of EF = 18 - 9 - 7 = 2 weeks :. Total float AB + Total float of CE + Free float of EF = 3 + 2 + 2 = 7 weeks

15. (c)


Activity Day	Α	В	С	D	Ε	Total Resources
2	12		1			13
3	12		1			13
4	12	6	1			19
5	12	6				18
6		6		6		12
7		6		6		12
8		6		6	9	21
9		6		6	9	21
10		6			9	15
11		6				6


16. (c)

Independent float affects neither preceding nor following activities

17. (a)

$$Z = \frac{x - \bar{x}}{\sigma}$$

For 22 days,

$$Z = \frac{22 - 17}{3} = \frac{5}{3} = 1.67$$

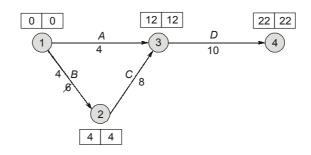
$$P(Z < 1.67) = 95.2\%$$
For 20 days,

$$Z = \frac{20 - 17}{3} = \frac{3}{3} = 1$$

$$P(Z < 1) = 84.13\%$$

$$\therefore P(Z < 1.66) - P(Z < 1) = 95.2\% - 84.13\%$$

= 11.07%


18. (d)

Activity	Crash limit (days)	Cost Slope (₹/day)
Α	4-3=1	(105-80)/(4-3) = 25
В	6-4=2	(250 - 180) / (6 - 4) = 35
С	8-5=3	(320 - 200) / (8 - 5) = 40
D	10 - 6 = 4	(530 - 350) / (10 - 6) = 45
A	В	С
		./

Since the critical activity B has the lowest crash cost per day, it should be crashed first. Hence, crash activity B by 2 days

Activity Critical

Critical path is still *B-C-D* Project completion time = 22 days Project cost = 810 + (2) (35) = ₹ 880

19. (b)

$$\sigma = \frac{t_p - t_0}{6}$$

$$\sigma_{\text{Brown}} = \frac{6 - 2}{6} = \frac{2}{3} = 0.67$$

$$\sigma_{\text{Louis}} = \frac{11 - 2}{6} = \frac{3}{2} = 1.5$$

 $\sigma_{
m Louis}$ > $\sigma_{
m brown}$

:. Mr. Louis was more uncertain than Mr. Brown.

21. (c)

...

- Critical path has a total float of 0.
- Slack time is associated with an event.

22. (c)

Project duration, T = 7 + 6 + 11 + 14 + 5 = 43 days Variance = $2^2 + 2^2 + 3^2 + 4^2 + 1^2 = 34$ Standard deviation $\sigma = \sqrt{34} = 5.8$ days Range of project duration = (Minimum time, Maximum time) Minimum time = T - $3\sigma = 25.6$ days Maximum time = T + $3\sigma = 60.4$ days

24. (c)

$$t_{e} = \frac{t_{0} + 4t_{m} + t_{p}}{6}$$
$$= \frac{5 + 4 \times 15 + 60}{6}$$
$$= 20.83 \text{ minutes.}$$

12 Civil Engineering

25. (d)

Free float for activity 1 - 3 will be zero.

26. (c)

During monitoring analysis of information is done and necessary changes are done to keep project as per schedule i.e. to rerail the project with minimum time over-run.

27. (d)

For 95% probability, area under curve should be 0.95.

$$A = 0.95, z = 1.65$$

Time required = $\sigma z + T_E = 4 \times 1.65 + 20$
= 26.6 months
= 26 months and 18 days

28. (a)

This is the sum of crash times along the critical path.

30. (a)

Now.
$$FF - \frac{IF}{TF} = 0 - \left\{ -\frac{18}{18} \right\} = 1$$