

DETAILED EXPLANATIONS

1．（d）

2．（a）
Responsiveness indicates that the forecast have fluctuating or swinging pattern．It is preferred for new product and for that number of period is kept small．Stability means that the forecast pattern is flat，smooth and has less fluctuation．It is preferred for old existing product and for that number of period is kept large．
$\therefore \quad F_{t}=F_{t-1}+\alpha\left(D_{t-1}-F_{t-1}\right)$
If $\alpha=0, n \rightarrow \infty$（limit of stability）
$\left[\because \alpha=\frac{2}{n+1}\right.$ ，if α is not given $]$

$$
F_{t}=F_{t-1}
$$

If $\alpha=1, n=1$（Limit of responsiveness）

$$
\begin{aligned}
& F_{t}=D_{t-1} \\
& \qquad 0 \rightleftarrows \underset{\text { Stable }}{ } \underset{\text { Responsive }}{ } 1
\end{aligned}
$$

3. (c)

4. (b)

If all the values in the replacement ratio column are either negative or infinite then the solution terminates and it indicates that the simplex problem have unbounded solution.
6. (b)

$$
\begin{aligned}
\text { Break-even point units } & =\frac{100000}{10-8}=50000 \\
\text { Capacity } & =80000 \\
\text { Margin of safety } & =80000-50000=30000
\end{aligned}
$$

7. (a)

$$
\text { Expected demand }=60 \times 0.17+65 \times 0.12+70 \times 0.25+80 \times 0.26+90 \times 0.2=74.3
$$

8. (b)

$$
\begin{aligned}
& E O Q=\sqrt{\frac{2 D C_{0}}{C_{h}}} \\
&(E O Q)_{A}=\sqrt{\frac{2 \times 200 \times 100}{8}} \\
&(E O Q)_{B}=\sqrt{\frac{2 \times 800 \times 100}{2}}=4 \times(E O Q)_{A} \\
& \Rightarrow \quad(E O Q)_{A}:(E O Q)_{B}:: 1: 4
\end{aligned}
$$

9. (d)

As

$$
\begin{aligned}
x_{\mathrm{BEP}} & =\frac{F}{s-v} \\
3500 & =\frac{14000}{7-v} \\
7-v & =4 \\
v & =₹ 3 \text { per unit }
\end{aligned}
$$

$$
\Rightarrow \quad 3500=\frac{14000}{7-v}
$$

11. (b)

Given:

$$
D_{1}=180 \text { unit, } F_{1}=200 \text { units }
$$

We know that, $F_{2}=F_{1}+\alpha\left(D_{1}-F_{1}\right)$

$$
\begin{aligned}
& =200+0.4(180-200)=192 \text { units } \\
F_{3} & =F_{2}+\alpha\left(D_{2}-F_{2}\right) \\
& =192+0.4(210-192)=199.2 \text { unis } \\
F_{4} & =F_{3}+\alpha\left(D_{3}-F_{3}\right) \\
& =199.2+0.4(250-199.2) \\
F_{4} & =219.52 \text { units }
\end{aligned}
$$

12. (c)

As per SPT rule:

Jobs	Processing time	Due date	Job flow time
A	5	11	5
C	9	13	14
E	11	26	25
B	13	19	38
D	16	31	54

Average job flow time using SPT rule $=\frac{5+14+25+38+54}{5}=27.2$
As per EDD rule:

Jobs	Processing time	Due date	Job flow time
A	5	11	5
C	9	13	14
B	13	19	27
E	11	26	38
D	16	31	54

Average job flow time using EDD rule $=\frac{5+14+27+38+54}{5}=27.6$

$$
\text { Now, } \frac{\text { Avg. job flow time using SPT }}{\text { Avg. job flow time using EDD }}=\frac{27.2}{27.6} \simeq 0.98
$$

13. (b)
$D=50000 C_{0}=₹ 25, C_{u}=₹ 40, C_{h}=0.1$ of $C_{u}=0.1 \times 40=₹ 4$

$$
E O Q=\sqrt{\frac{2 D C_{0}}{C_{h}}}=\sqrt{\frac{2 \times 50000 \times 25}{4}}=790.569 \text { units }
$$

$\because E O Q>$ Maximum quantity that can be ordered at ones.

So,

$$
\begin{aligned}
(T I C)_{Q=600} & =\frac{D}{Q} \times C_{0}+\frac{Q}{2} \times C_{h}=\frac{50000}{600} \times 25+\frac{600}{2} \times(40 \times 0.1) \\
& =₹ 3283.33
\end{aligned}
$$

Alternate:

$$
\begin{aligned}
\text { TIC } & =\frac{\sqrt{2 D C_{0} C_{h}}}{2}\left[k+\frac{1}{k}\right] \quad\left\{k=\frac{Q^{*}}{Q}\right\} \\
& =\frac{\sqrt{2 \times 50000 \times 25 \times 4}}{2}[1.317615+0.758947] \\
\text { TIC } & =₹ 3283.33
\end{aligned}
$$

14. (c)

$$
\text { Arrival rate, } \lambda=\frac{1}{9} \text { per minute }
$$

Service rate, $\mu=\frac{1}{5}$ per minute
Time in queue, $T=10$ minute

$$
\rho=\frac{\lambda}{\mu}=\frac{1 / 9}{1 / 5}=\frac{5}{9}
$$

Probability (waiting time in queue >10 minutes) $=\rho(\exp)^{-T / W_{S}}$
where, W_{s} is waiting time is system.

$$
\begin{aligned}
& W_{s}=\left(\frac{\rho}{1-\rho}\right) \times \frac{1}{\lambda}=\left(\frac{5 / 9}{1-5 / 9}\right) \times 9 \\
& W_{s}=\frac{5 \times 9}{4}=\frac{45}{4} \text { minutes }
\end{aligned}
$$

Probability $\left(W_{q}>10\right.$ minutes $)=\left(\frac{5}{9}\right)(\exp)^{\frac{-10 \times 4}{45}}=0.22839$
Probability $\left(W_{q}>10\right.$ minutes $) \simeq 22.84 \%$
15. (c)

Estimated completion time, $T_{e}=3+8+6=17$
Standard deviation, $\sigma=\sqrt{\Sigma \sigma^{2}}=\sqrt{1^{2}+2^{2}+2^{2}}=3$
$z=\frac{T-T_{e}}{\sigma}=\frac{20-17}{3}=1$
Probability $=0.84$
16. (b)

$$
\begin{aligned}
& P=100, d=75, C_{s}=₹ 600, C_{h}=₹ 1 \\
& \qquad E O Q=\sqrt{\frac{2 \times C_{s} \times d}{C_{h}}} \times \sqrt{\frac{P}{P-d}}=\sqrt{\frac{2 \times 600 \times 75}{1}} \sqrt{\frac{100}{25}}=600
\end{aligned}
$$

17. (d)

Objective function is parallel to one of the binding constraints.

18. (a)

$$
\begin{aligned}
\text { S.I. } & =\sqrt{\sum_{i=1}^{n}\left(\left(T_{s}\right)_{\max }-T_{s i}\right)^{2}} \\
\left(T_{s i}\right)_{\max } & =10 \min \\
\text { S.I. } & =\sqrt{(10-6)^{2}+(10-10)^{2}+(10-8)^{2}+(10-7)^{2}+(10-6)^{2}+(10-8)^{2}} \\
& =\sqrt{4^{2}+2^{2}+3^{2}+4^{2}+2^{2}} \\
& =\sqrt{16+4+9+16+4}=\sqrt{49}=7
\end{aligned}
$$

19. (c)

$$
\begin{aligned}
R_{\text {eq }} & =\left[1-\left(1-R_{3}\right)\left(1-R_{1} R_{2}\right)\right] \times R_{4} \times R_{5} \\
& =[1-(1-0.7)(1-0.5 \times 0.6)] \times 0.8 \times 0.9 \\
& =0.79 \times 0.8 \times 0.9 \\
& =0.5688=56.88 \%
\end{aligned}
$$

20. (a)

$$
\text { Variance } \sigma^{2}=\left(\frac{t_{p}-t_{0}}{6}\right)^{2}
$$

Variance for activity $A, \sigma_{A}{ }^{2}=\left(\frac{3-1}{6}\right)^{2}=0.11111$
Variance for activity $B, \sigma_{B}{ }^{2}=\left(\frac{5-2}{6}\right)^{2}=0.25$
Standard deviation for project $=\sqrt{\sigma_{A}^{2}+\sigma_{B}^{2}}=\sqrt{0.111+0.25}=0.6$
21. (c)
Given:

$$
\begin{aligned}
\text { O.T. } & =0.5 \mathrm{~min} \\
R & =110 \%=1.1
\end{aligned}
$$

Allowances $=10 \%$ of standard time
Normal time, N.T. $=$ O.T. $\times R=0.5 \times 1.1$
$=0.55 \mathrm{~min}$
Standard time, S.T. = N.T. + Allowance

$$
\begin{aligned}
\text { S.T. } & =0.55+(0.1 \times \text { S.T. }) \\
0.9 \text { S.T. } & =0.55 \\
\text { S.T. } & =0.611 \mathbf{~ m i n}
\end{aligned}
$$

22. (a)

Sequence \rightarrow D-C - B-A

Job	Job Time	Due Date	Job flow time
D	6	17	$0+6=6$
C	7	15	$6+7=13$
B	10	16	$13+10=23$
A	14	20	$23+14=37$

$$
\because \quad \text { Make span time }=37 \text { days }
$$

23. (a)

Minimum cost $=[2 \times 6+1 \times 1+8 \times 5+15 \times 3+9 \times 2] \times 100=$ Rs. 11600
24. (a)

Critical path is $1-2-5-6-7$
Project duration, $\quad t_{E}=3+2+3+5=13$
Free float $(4-6)=8-4-2=2$
25. (d)
Given:

$$
\begin{aligned}
\mathrm{LT} & =3 \text { months } \\
d & =15 \text { units } \\
\sigma & =3 \text { units } \\
z & =0.97
\end{aligned}
$$

$$
\text { Safety stock }(\mathrm{ss})=z \cdot \sigma=0.97 \times 3=2.91
$$

$$
\mathrm{ROL}=L T \times \mathrm{d}+s s=3 \times 15+2.91=47.91 \text { units }
$$

26. (b)

$$
\begin{aligned}
\text { Arrival rate }(\lambda) & =5 / \text { hour } \\
\text { Service rate }(\mu) & =6 / \text { hour } \\
\rho & =\frac{\lambda}{\mu}=\frac{5}{6}=0.833 \\
P(\text { no queue }) & =P(0 \text { person in system })+P(1 \text { person in system }) \\
& =P_{0}+P_{1} \\
& =P_{0}+\rho P_{0}=P_{0}(1+\rho)=1-\rho^{2} \\
& =0.305
\end{aligned}
$$

28. (d)

We know that,

$$
\begin{aligned}
\left(\frac{P}{V}\right)_{\text {ratio }} & =\frac{(S-V)}{S} \times 100 \%=\frac{(1000000-650000)}{1000000} \times 100 \% \\
& =35 \% \\
\text { BEP } & =\frac{\text { Fixed cost }}{\left(\frac{P}{V}\right)_{\text {ratio }}}=\frac{90000}{0.35}=₹ 257142.86 \\
(\mathrm{BEP})_{\text {sales }} & \approx ₹ 257143
\end{aligned}
$$

29. (a)

$$
\begin{aligned}
\text { Total time } & =15+10+12+13+15+9=74 \\
\text { Cycle time } & =15 \\
\text { Line efficiency } & =\frac{\text { Total time }}{\text { Cycle time } \times \text { No. of work station }}=\frac{74}{15 \times 6} \simeq 82 \%
\end{aligned}
$$

30. (c)

For 200 units of A.
Units of $P=2 \times 200=400$ units
Net requirement of $P=400-20=380$ units
for 1 units of P, units of S required $=4$
Net requirement of $S=4 \times 380-10=1520-10=1510$ units

