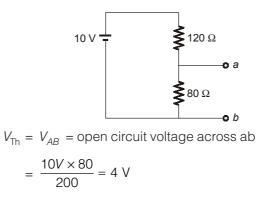
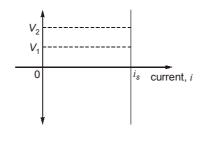
_CLASS TO	EST				
				11_EE_B_190719	
			Netwo	iks meory	
MADE EASY					
India's Best Institute for IES, GATE & PSUs Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna					
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612					
	CLA	SS T	EST		
2019-2020					
FI	FCTRIC		INIFERINI	G	
Date of Test : 19/07/2019					
	Date of	1est: 19/0/	/2019		
ANSWER KEY > Network Theory					
1. (a)	7. (a)	13. (d)	19. (c)	25. (d)	
2. (c)	8. (b)	14. (b)	20. (b)	26. (c)	
3. (c)	9. (c)	15. (a)	21. (c)	27. (d)	
4. (d)	10. (b)	16. (b)	22. (b)	28. (b)	
5. (a)	11. (c)	17. (c)	23. (b)	29. (d)	
6. (c)	12. (b)	18. (c)	24. (a)	30. (d)	



DETAILED EXPLANATIONS

1. (a)

As DC and cosine components are absent, therefore it is an odd signal. As even harmonics are absent, therefore it has half wave symmetry.


2. (c)

$$R_{\rm Th} = 80 \ \Omega \ \text{II} \ 120 \ \Omega$$

= $\frac{80 \times 120}{200} = 48 \ \Omega$

3. (c)

The ideal independent current source is a two terminal element which supplies its specified current to the circuit in which it is placed independently of the value and direction of the voltage appearing across its terminals.

4. (d)

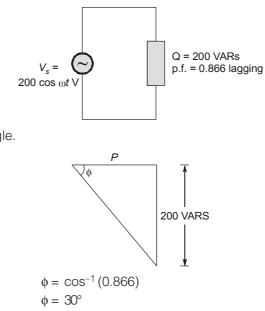
From (i) and (ii)

$$2I = 4I - 9$$
$$I = 4.5 \text{ A}$$

5. (a)

 \Rightarrow

If y(t) is the output and x(t) is input then


$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

when

$$\begin{aligned} x(t) &= t \, u(t) \qquad (\text{ramp function}) \\ y(t) &= \int_{-\infty}^{t} \tau u(\tau) \, d\tau = \int_{0}^{t} \tau \, d\tau = \left(\frac{\tau^{2}}{2}\Big|_{0}^{t}\right) \\ y(t) &= \frac{t^{2}}{2} \, u(t) \end{aligned}$$

hence the obtained answer is unit parabolic function

6. (c)

According to power triangle.

The $P_{(avg)}$ drawn from the source,

$$Q = \text{Reactive power} = P_{(\text{avg})} \times \tan \phi$$
$$P_{(\text{avg})} = \frac{Q}{\tan \phi} = \frac{200}{\tan 30^{\circ}} = \frac{200}{\left(1/\sqrt{3}\right)} \simeq 346 \text{ W}$$

7. (a)

:..

When switch *s* is closed, the equivalent resistance

$$R_{eq} = \left(\frac{R_1 \times R_3}{R_1 + R_3}\right) \text{ is less than } R_1 \text{ or } R_3 \text{ individually}$$

$$| \longleftarrow V_1 \longrightarrow | \longleftarrow V_2 \longrightarrow |$$

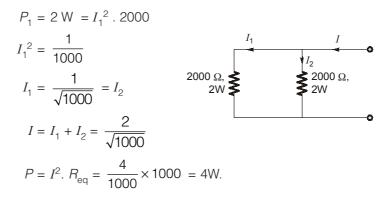
$$R_{eq} \qquad R_2$$

$$| \longleftarrow V \longrightarrow |$$

$$V = IR$$

for constant current, $V \propto R$.

So incase of R_{eq} , the resistance is decreased so voltage V_1 is decreased so obviously V_2 is increased.


8. (b)

Equivalent resistance

= 2000 || 2000 = 1000
$$\Omega$$

9

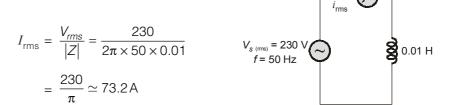
9. (c)

Given, current in the circuit as $i(t) = 2 \sin 500t \text{ A}$. Therefore $\omega = 500 \text{ rad/s}$

The phase angle,

$$\phi = \tan^{-1} \frac{\omega L}{R} = \tan^{-1} \frac{500 \times 20 \times 10^{-3}}{10}$$

$$\phi = \tan^{-1} 1 = 45^{\circ}$$


$$\phi = \tan^{-1} 1 = 45^{\circ}$$

Hence the load is R, L the voltage will be leading by 45° with current. Maximum value of voltage,

$$V_m = I_m \times |Z|$$

= $2 \times \sqrt{10^2 + (500 \times 20 \times 10^{-3})^2} = 2 \times \sqrt{10^2 + 10^2}$
= $20\sqrt{2} = 28.28 \text{ V}$
 $v(t) = 28.28 \sin (500t + 45^\circ) \text{ V}$

10. (b)

...

11. (c)

$$f(t) = u(t-a) = \left(\frac{1}{s}e^{-as}\right)$$

$$i(t) = \frac{v(t)}{2} = 25 \left(1 - \frac{(\omega t)^2}{2!} + \frac{(\omega t)^4}{4!} - \dots \right) = (25 \cos \omega t)$$

13. (d)

In the given circuit, the resistors DE and EF are in series. Hence their equivalent resistance = 2 + 4 = 6 ohms. This 6 ohm resistance is in parallel with resistance DG. The equivalent resistance of these two resistors is given by

$$R_{\rm eq} = \frac{12 \times 6}{12 + 6} = 4\,\Omega$$

This 4 ohm resistor is in series with resistance CD giving equivalent resistance = 4 + 2 = 6 ohms. This 6-ohm resistor is in parallel with resistance CG giving equivalent resistance

$$R_{\rm eq} = \frac{6 \times 6}{6+6} = 3\Omega$$

This 3 ohm resistance is in parallel with resistance CH giving equivalent resistance.

$$R_{\rm eq} = \frac{6 \times 3}{6+3} = 2\Omega$$

This 2 ohm resistance is in parallel with resistance CA giving equivalent resistance.

$$R_{\rm eq} = \frac{2 \times 2}{2+2} = 1$$

This 1 ohm resistance is in series with 3 ohm resistance giving total resistance of the circuit = 3 + 1 = 4 Ω

Hence current,

$$\frac{V}{R} = \frac{100}{4} = 25 \text{ A}$$

14. (b)

$$V = \frac{V_m}{\sqrt{2}} = \frac{100}{\sqrt{2}} \text{ volt}$$
$$I = \frac{I_m}{\sqrt{2}} = \frac{10}{\sqrt{2}} \text{ A}$$

:.

 $P_{\text{avg}} = I^2 R$ $R = \frac{V}{I} = Z = \frac{100}{10} = 10 \Omega$

(since v and i in phase)

:..

I = I = 10

$$P_{\text{avg}} = \left(\frac{10}{\sqrt{2}}\right)^2 \times 10 = 500 \text{ watt}$$

15. (a)

When two inductors are connected in series, the effective inductance is In this case, $L_{eff} = L_1 + L_2 - 2 M$ $= 2 + 4 - 2 \times 0.15$

$$= 2 + 4 - 2 \times 0.15$$

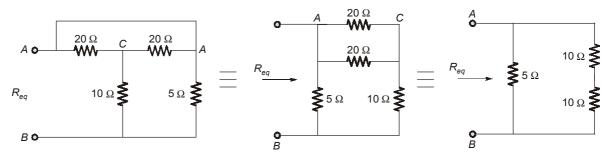
= 5.7 mH

16. (b)

The equation of line passing through origin is y = mx

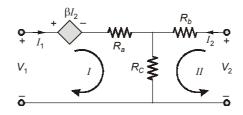
$$V = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) t$$
$$V = \frac{V_m}{\frac{T_0}{2}} t$$
$$V = \left(\frac{2V_m}{T_0}\right) t$$

the instantaneous power for $0 \le t \le T_0$ is


$$p(t) = \begin{cases} \left(\frac{2V_m t}{T_0}\right)^2 & 0 \le t < 0.5 \ T_0 \\ 0 & 0.5 \ T_0 \le t < T_0 \end{cases}$$

 P_{avg} , observing that the fundamental period is T_0 , we have

$$P_{avg} = \frac{1}{T_0} \int_0^{0.5T_0} \frac{4V_m^2}{T_0^2 R} t^2 dt$$
$$= \frac{4V_m^2}{T_0^3 R} \left[\frac{t^3}{3}\right]_0^{0.5T_0}$$
$$P_{avg} = \frac{V_m^2}{6R}$$


17. (c)

Redrawing the circuit

$$R_{eq} = 5 \| (10 + 10) = \frac{5 \times 20}{5 + 20} = 4 \ \Omega$$

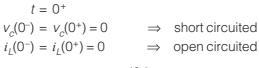
18. (c)

Applying KVL

in loop 1

 \Rightarrow

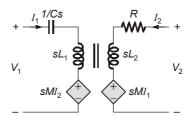
19. (c)


$$i(0^+) = \underset{s \to \infty}{Lim} sI(s) = \underset{s \to \infty}{Lim} s \cdot sC \cdot V(s)$$

$$= \lim_{s \to \infty} s^{2} \times \frac{1}{2} \times \frac{s+1}{s^{3}+s^{2}+s+1} = \frac{1}{2} A$$

20. (b)

At



Applying KVL

$$10I = 50$$

 $I = 5 A$

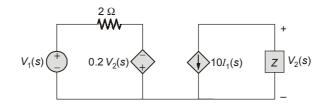
21. (c)

Drawing equivalent in s-domain

Applying KVL in loop I

$$V_1 = \left(\frac{1}{sC} + sL_1\right)I_1 + sMI_2$$

in loop II


$$V_2 = sMI_1 + (R + sL_2)I_2$$

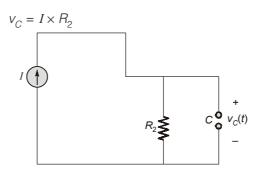
comparing with standard equations

$$Z_{11} = \frac{1}{sC} + sL_1$$
$$Z_{12} = sM$$
$$Z_{21} = sM$$
$$Z_{22} = R + sL_2$$

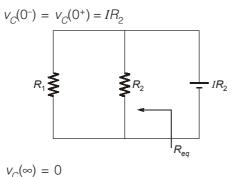
22. (b)

Redrawing the circuit

$$Z = 1.5s \| 1 = \frac{1.5s \times 1}{1.5s + 1} = \frac{1.5s}{1.5s + 1}$$


Applying KVL in loop I

$$\begin{split} V_1(s) &= 2I_1(s) - 0.2 \ V_2(s) & \dots(i) \\ V_2(s) &= -10I_1(s) \times \frac{1.5 \ s}{1.5 \ s+1} \\ V_2(s) &= \frac{-15 \ sI_1(s)}{1.5 \ s+1} & \dots(ii) \end{split}$$


Input admittance =
$$\frac{I_1(s)}{V_1(s)} = \frac{1.5s+1}{6s+2}$$

23. (b)

at $t = 0^{-}$

at $t = 0^+$

$$V_C(\infty) =$$

(:: capacitor will discharge fully)

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

$$v_C(t) = \left[v_C(0) - v_C(\infty) \right] e^{-\frac{t}{\tau}} + v_C(\infty)$$

$$v_C(t) = I R_2 \cdot e^{\frac{-t(R_1 + R_2)}{R_1 R_2 \cdot C}}$$
Volts

24. (a)

 $S = VI^* = (10\angle 15^\circ)(2\angle -45^\circ)^* = 20\angle 15 + 45^\circ = 20\angle 60^\circ = 20(\cos 60^\circ + j\sin 60^\circ)^*$

60°)

$$= 20\left(\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)$$
$$= (10 + j10\sqrt{3}) = (10 + j17.32) = P + jQ$$

25. (d)

Given, power consumed is

$$P = I^2 R_{eq}$$
$$I = \sqrt{\frac{P}{R_{eq}}} = \sqrt{\frac{10}{5}} = \sqrt{2} A$$

Also

or,

Iso,
$$I = \frac{V}{|Z|} \text{ or } \sqrt{2} = \frac{(50/\sqrt{2})}{|Z|}$$

or,
$$|Z| = 25 \Omega$$

or,
$$\sqrt{X_L^2 + 15^2} = 25$$

or,

$$X_L = \sqrt{25^2 - 15^2} = 20 \ \Omega$$

Hence, p.f. of given circuit is

$$\cos \phi = \frac{R_{eq}}{|Z|} = \frac{15}{25} = \frac{3}{5} = 0.6 \text{ (lag)}$$

26. (c)

27. (d)

Carbon resistor and semiconductors have non-linear relationship between V and I. Hence, Ohm's law is not applicable. Also, these are not bilateral.

28. (b)

If 'l' refers to the length then,

$$I \propto \frac{1}{R} \propto \frac{A}{\rho l} \propto \frac{A}{l}$$

When *l* is reduced. *I* will increase and vice-versa.

29. (d)

$$R_1 + R_2 = 4.5$$

$$\frac{R_1 R_2}{R_1 + R_2} = 1 \text{ or } R_1 R_2 = 4.5$$

$$(R_1 - R_2)^2 = (R_1 + R_2)^2 - 4 R_1 R_2$$

$$= (4.5)^2 - 4 \times 4.5 = \frac{9}{4}$$

or,

and

:.

...(*i*)

On solving equations (i) and (ii), we get

$$R_1 = 3 \Omega \text{ and } R_2 = 1.5 \Omega$$
 or,
$$R_1 = 1.5 \Omega \text{ and } R_2 = 3 \Omega$$

 $R_1 - R_2 = \frac{3}{2} = 1.5$

30. (d)

For series connection,

,	$R_{eq} = R_1 + R_2$
Or,	$\frac{R_{eq}}{V_r^2} = \frac{R_1}{V_r^2} + \frac{R_2}{V_r^2}$
Or,	$\frac{1}{P_{eq}} = \frac{1}{P_1} + \frac{1}{P_2}$
Or,	$P_{eq} = \frac{P_1 P_2}{P_1 + P_2}$
Given, 	$P_1 = P_2 = 1000 \text{ W}$ $P_{eq} = 500 \text{ Watt}$