S.No.: 05 SK1_CS_C_210719

Digital Logic

MADE EASY

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST 2019-2020

COMPUTER SCIENCE & IT

Date of Test: 21/07/2019

ANS	SWER KEY	>	Digital	Logic					
1.	(b)	7.	(c)	13.	(a)	19.	(b)	25.	(c)
2.	(d)	8.	(b)	14.	(c)	20.	(c)	26.	(b)
3.	(a)	9.	(b)	15.	(a)	21.	(d)	27.	(b)
4.	(a)	10.	(d)	16.	(d)	22.	(a)	28.	(a)
5.	(c)	11.	(d)	17.	(d)	23.	(a)	29.	(c)
6.	(b)	12.	(c)	18.	(b)	24.	(c)	30.	(b)

DETAILED EXPLANATIONS

1. (b)

Converting into decimal,

$$(2)_3 = 2 \times 3^\circ = 2$$

 $(3)_4 = 3 \times 4^\circ = 3$
 $(14)_5 = 1 \times 5^1 + 4 \times 5^\circ = 9$
 $(15)_6 = 1 \times 6^1 + 5 \times 6^\circ = 11$

$$N = 5,$$

$$t_{pd} = 2 \operatorname{nsec}$$

$$T = 2 N t_{pd}$$

$$T = 2 \times 5 \times 2 \times 10^{-9}$$

$$= 20 \operatorname{nsec}$$

3. (a)

$$Y = \overline{S}_0 \overline{S}_1 I_0 + S_0 \overline{S}_1 I_1 + \overline{S}_0 S_1 I_2 + S_0 S_1 I_3$$

$$= \overline{A} \overline{B} C + \overline{A} B \cdot 1 + A \overline{B} \cdot 0 + A B \cdot \overline{C}$$

$$= \overline{A} \overline{B} C + \overline{A} B \cdot (C + \overline{C}) + A B \overline{C}$$

$$= \overline{A} \overline{B} C + \overline{A} B C + \overline{A} B \overline{C} + A B \overline{C}$$

$$\approx 001, 011, 010, 110$$

$$f(A, B, C) = \Sigma m (1, 2, 3, 6)$$

4. (a)

M = total number of states n = total number of FF's $M = 2^n$; Binary counter $M \le 2^n$; Non-Binary counter

5. (c)

Range of signed 1's complement number is $-2^{n-1} + 1$ to $2^{n-1} - 1$.

$$Y_1 = \overline{c}$$

$$F = Y_2 = \overline{d}Y_1 + dc$$

$$= \overline{d}\overline{c} + dc$$

$$= c \odot d$$

7. (c)

Output of the 4:1 MUX circuit in Figure A is

$$Y = I_0 \overline{A} \overline{B} + I_1 \overline{A} B + I_2 A \overline{B} + I_3 A B$$

Output of the circuit in Figure B is

$$Y = A \oplus B \oplus C = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

On comparison

$$I_0 = C$$

$$I_1 = \overline{C}$$

$$I_2 = \overline{C}$$

$$I_3 = C$$

8. (b)

Simplifying boolean expression:

$$F = C(B + C) (A + B + C)$$

$$= (CB + CC) (A + B + C)$$

$$= (CB + C) (A + B + C)$$

$$= C(1 + B) (A + B + C)$$

$$= C(A + B + C)$$

$$= AC + BC + C$$

$$= C(1 + A + B)$$

$$= C$$

9. (b)

$$Y = I_0 \cdot \bar{S}_1 \bar{S}_0 + I_1 \cdot \bar{S}_1 S_0 + I_2 \cdot S_1 \bar{S}_0 + I_3 S_1 S_0$$

$$Y = A\bar{B} + (1)B = B + A\bar{B} = A + B$$

- 10. (d)
- 11. (d)

For 1st and 2nd clock pulses, enable is 1

12. (c)

The characteristics tabel with J, K, Q_n , Q_{n+1} and the excitation table for S and R is shown below –

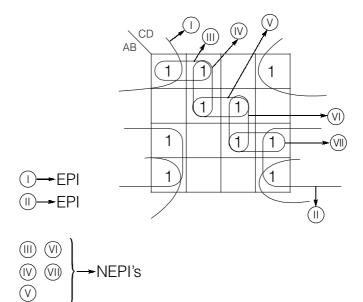
J	K	Q _n	Q _{n+1}	S	R
0	0	0	0	0	×
0	0	1	1	×	0
0	1	0	0	0	×
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	×	0
1	1	0	1	1	0
1	1	1	0	0	1

The K-map for S and R is shown as – For S,

$$S(J, K, Q_n) = \Sigma m(4, 6) + d(1, 5) = J\bar{Q}_n$$

KQ,	7			
1	00	01	11	10
0		×		
1	1	×		1

$$S = J\overline{Q}_n$$


For R,

$$R(J, K, Q_n) = \Sigma m(3, 7) + d(0, 2) = KQ_n$$

KC	Q_n			
1	00	01	11	10
0	×		1	×
1			1	

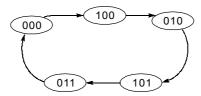
$$R = KQ_n$$

13. (a)

EPI = Essential Prime Implicant [which cover a minterm not covered by any other prime implicants] NEPI = Non Essential Prime Implicant. Number of EPI's = 2, number of NEPI's = 5.

14. (c)

Plotting the K-map for $Y = A\bar{B} + B\bar{C}$


	ВĈ	ĒС	BC	$B\bar{C}$
Ā	0	1	3	1 2
Α	1 4	1 5	7	1 6

So,
$$\Sigma m (2, 4, 5, 6) = SOP$$

 $\Sigma \pi (0, 1, 3, 7) = POS$

15. (a)

Clask	Present state			FF	2	FF1	FF0
Clock	Q_2	Q_1	Q_0	$J_2 = \overline{Q}_0$	$K_2 = 1$	$D_1 = Q_2$	$T_0 = Q_1$
	0	0	0	1	1	0	0
1	1	0	0	1	1	1	0
2	0	1	0	1	1	0	1
3	1	0	1	0	1	1	0
4	0	1	1	0	1	0	1
5	0	0	0				

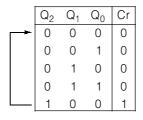
The number of used states = 5

∴ modulus value = 5

16. (d)

lf

$$\overline{Z} = (P+A)(Q+\overline{A})$$


$$\overline{Z} = PQ+AQ+\overline{A}P$$

$$Z = \overline{A}+B$$

$$\overline{Z} = \overline{A}+B = A\overline{B}$$

$$Q = \overline{B}, P = O$$

17. (d)

So the output \mathbf{Q}_2 can be directly connected to clear.

.. Best architecture is a wire connection.

18. (b)

		S_1 S_0 MUX inputs
Clock	S.I = Y	Q_3 Q_2 Q_1 Q_0
		0 0 1 1 - Initial
1	0	0 0 0 1 state
2	0	0 0 0 0
3	1	1 0 0 0
4	1	1 1 0 0
5	1	1 1 1 0
6	1	1 1 1 1
7	0	0 1 1 1
8	0	0 0 1 1

After 8 clock pulse.

19. (b)

Let the base be x, then

$$292_{10} = 1204 x$$

$$= 1 \times x^{3} + 2 \times x^{2} + 0 \times x^{1} + 4 \times x^{0}$$

$$= 292_{10}$$

$$= x^{3} + 2x^{2} + 4$$

$$= 6 \text{ (By substitution)}$$

20. (c)

$$Q_{n+1} = \overline{A}\overline{B} + A\overline{B} + \overline{A}B\overline{Q}_{n}$$

$$Q_{n+1} = \overline{B} + \overline{A}B\overline{Q}_{n}$$

$$= \overline{B} + \overline{A}\overline{Q}_{n}$$

21. (d)

			FFD	FFT
	Q_D	Q_T	$D = \overline{Q}_T$	$T = \overline{Q}_T \oplus Q_D$
Clock pulse	0	0	1	1
1	1	1	0	1
2	0	0	1	1
3	1	1	0	1
4	0	0		

So, output will either be 00 or 11 and never 10.

22. (a)

State table can be drawn from state diagram

Present state	Input	Next state
Q_n	X	Q_{n+1}
0	1	0
0	0	1
1	1	0
1	0	0

$$Q_{n+1} = \overline{Q_n + X}$$

 $(Q_{n+1}$ represent output of NOR gate)

23. (a)

In the circuit, we have

$$D_0 = \overline{Q_1 Q_2} = \overline{Q}_1 + \overline{Q}_2$$

$$D_1 = Q_0$$

$$D_2 = Q_1$$

The truth table for the circuit is obtained below:

	Present State			Inputs			Next State		
CLK number	Q_2	Q ₁	Q_0	<i>D</i> ₂	<i>D</i> ₁	D_0	Q_2^{\dagger}	Q ₁ ⁺	Q_0^{\dagger}
initial	0	0	0	-	-	-	-	-	-
1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	1	1	0	1	1
3	0	1	1	1	1	1	1	1	1
4	1	1	1	1	1	0	1	1	0

After 4 clock pulses, output is $Q_2 Q_1 Q_0 = 110$

24. (c)

For $1^{st} 4 \times 1 MUX$,

$$I_0 = C$$

$$I_1 = \overline{C}$$

$$I_2 = \overline{C}$$

$$I_3 = C$$

$$f_1(A, B, C) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

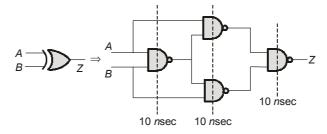
$$= \Sigma_m(1, 2, 4, 7)$$

So,

For $2^{nd} 4 \times 1 MUX$,

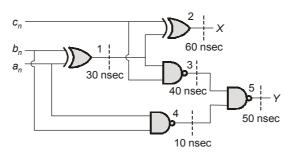
$$I_0 = C$$

 $I_1 = 1$
 $I_2 = 0$
 $I_3 = C$


So,

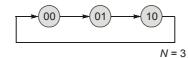
$$f_2(A, B, C) = \overline{A}\overline{B}C + \overline{A}B \cdot 1 + A\overline{B} \cdot 0 + AB \cdot C$$
$$= \Sigma_m(1, 2, 3, 7)$$

So, f_1 (A, B, C) represents the difference of full substractor while f_2 (A, B, C) represents the borrow of full substractor.

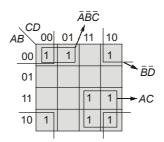

25. (c)

An Ex-OR gate can be represented as

So, for EX-OR gate, it will take 30 nsec to get the output.



So, to get the output Y, it will take 50 nsec.


26. (b)

			FF	0	FF	FI
CLK	Q ₁	Q_0	$J_0 = \overline{Q}_1$	K ₀ = 1	$J_1 = Q_0$	$K_1 = \overline{Q}_0$
	0	0	1	1	0	1
1	0	1	1	1	1	0
2	1	0	0	1	0	1
3	0	0				

27. (b)

The k-map has to rearranged as

$$F = \bar{A}\bar{B}\bar{C} + \bar{B}\bar{D} + AC$$

28. (a)

For the given 4×1 MUX, 'A' and 'B' are select lines and 'C' be the input

	I_0	I_1	I_2	I_3
Ē	0	2	4	6
С	1	3	5	7
	1	0	1	0

So,
$$I_{0} = 1 = a$$

$$I_{1} = 0 = b$$

$$I_{2} = 1 = c$$

$$I_{3} = 0 = d$$
So,
$$a \oplus d = b \oplus c = 1$$

So, output of NAND gate is 0 i.e. MUX 'E' connected to '0'.

The MUX is in disable state. MUX is having active high enable, but E = 0, so that MUX is in disable state. Hence MUX output Z is equal to '0'.

29. (c)

Number of flip-flops for mod-16 ripple counter = 4

Maximum clock frequency =
$$\frac{10^9}{4p}$$
Hz = 5 MHz

$$p = \frac{10^9}{4 \times 5 \times 10^6} = \frac{1000}{20}$$

$$p = 50$$

30. (b)

$$X = (A \oplus B) (B \odot C) C$$

to get
$$X = 1$$
,

$$A \oplus B = 1$$

$$B \odot C = 1$$

$$C = 1$$
for
$$(ABC) = (101) \Rightarrow A \oplus B = 1, B \odot C = 0, C = 1 \Rightarrow X = 0$$
for
$$(ABC) = (011) \Rightarrow A \oplus B = 1, B \odot C = 1, C = 1 \Rightarrow X = 1$$
for
$$(ABC) = (111) \Rightarrow A \oplus B = 0, B \odot C = 1, C = 1 \Rightarrow X = 0$$
for
$$(ABC) = (111) \Rightarrow A \oplus B = 0, B \odot C = 0, C = 0 \Rightarrow X = 0$$