**S.No.:** 03 **CH1\_EE\_S\_180719** 

### Measurement



# **MADE EASY**

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

# CLASS TEST 2019-2020

# ELECTRICAL ENGINEERING

Date of Test: 18/07/2019

| ANSWER KEY > Measurements |     |     |       |     |     |     |     |     |     |
|---------------------------|-----|-----|-------|-----|-----|-----|-----|-----|-----|
| 1.                        | (d) | 7.  | (a)   | 13. | (a) | 19. | (b) | 25. | (a) |
| 2.                        | (b) | 8.  | (b,c) | 14. | (c) | 20. | (d) | 26. | (d) |
| 3.                        | (a) | 9.  | (a)   | 15. | (d) | 21. | (b) | 27. | (b) |
| 4.                        | (c) | 10. | (c)   | 16. | (c) | 22. | (c) | 28. | (b) |
| 5.                        | (b) | 11. | (b)   | 17. | (d) | 23. | (d) | 29. | (c) |
| 6.                        | (a) | 12. | (a)   | 18. | (b) | 24. | (b) | 30. | (b) |



# **Detailed Explanations**

# 1. (d)

: Power dissipation across the resistor

$$P = VI$$

relative limiting error in measurement of power across the resistor is

$$\frac{\delta P}{P} = \pm \left[ \frac{\delta V}{V} + \frac{\delta I}{I} \right]$$

$$\delta V = \pm \frac{2}{100} \times 100 = \pm 2V$$

$$\frac{\delta V}{V} \% = \pm \frac{2}{80} \times 100 = \pm 2.5\%$$

$$\delta I = \pm \frac{2}{100} \times 150 = \pm 3 \text{ mA}$$

$$\frac{\delta I}{I} \% = \pm \frac{3}{80} \times 100 = \pm 3.75\%$$

$$\frac{\delta P}{P} \% = \pm [2.5 + 3.75] = 6.25\%$$

# 2. (b

In order to achieve converging balance, the elements which are not common in the equation of  $R_1$  and  $L_1$  are chosen as variables.

So,  $R_4$  and  $C_4$  should be chosen for achieving converging balance.

# 3. (a)

The frequency ratio of two signals is given by

$$\frac{f_y}{f_x} = \frac{\text{number of intersections of the horizontal line with the curve}}{\text{number of intersections of the vertical line with the curve}}$$

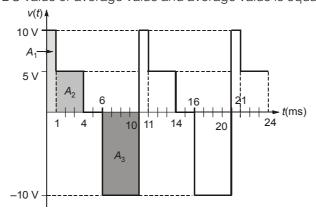
$$\frac{f_y}{f_x} = \frac{9}{7}$$

$$\frac{f_x}{f_y} = \frac{7}{9}$$

$$\frac{f_x}{f_y} = 0.77 \text{ A}$$

# 5. (b)

As PMMC reads only DC value or average value and average value is equal to





$$V_{\text{avg}} = \frac{\text{Area under the curve}}{\text{Total time}}$$

$$V_{\text{avg}} = \frac{A_1 + A_2 - A_3}{10}$$

$$= \frac{[10 \times 1] + [5 \times 3] - [4 \times 10]}{10} = -1.5 \text{ V}$$

# 6. (a)

For the instrument to have uniform scale, the deflection  $(\theta)$  should vary linearly with the quantity to be measured

In Electrodynamo Wattmeter the deflection,  $\theta \propto P_T$  and in permanent magnet moving coil,  $\theta \propto I$ 

.. Both of these instruments have uniform scale.

# 7. (a)

Torque produced

where

$$T = \frac{1}{2}I^{2}\frac{dL}{d\theta}$$

$$I = 5 \text{ A}$$

$$T = 180 \,\mu\text{N-m}$$

$$= 180 \times 10^{-6} \,\text{N-m}$$

$$T = \frac{1}{2} \times 5^{2} \times \frac{dL}{d\theta}$$

$$180 \times 10^{-6} = \frac{1}{2} \times 5^{2} \times \frac{dL}{d\theta}$$

Date of change of self inductance

$$\frac{dL}{d\theta} = 14.4 \times 10^{-6} \text{ H/radian}$$

$$\frac{dL}{d\theta} = 14.4 \,\mu\text{H/radian}$$

# 8. (b,c)

- In self-generating (or active) transducers, the energy requirement of the transducer are met entirely from the input signal.
- In a photovoltaic cell, the incident light energy whose intensity being measured, supplies the entire energy for generating the proportional amount of output voltage, so it is self generating transducer.
- In Bourdon tube of a pressure gauge input pressure which is to be measured cause the deflection of pointer no other external energy is required for deflection.
- In thermocouple the heat energy whose temperature is to be measured generate emf.
- In LVDT some excitation energy is required for generating emf in secondary winding. So these are power operated or passive transducers.

### 9. (a)

$$\Rightarrow \qquad \qquad \phi = \tan^{-1} \left[ \sqrt{3} \left( \frac{W_1 - W_2}{W_1 + W_2} \right) \right] = \tan^{-1} \left[ \sqrt{3} \left( \frac{4 - 2}{4 + 2} \right) \right] = 30^{\circ}$$
Power factor =  $\cos \phi = \cos 30^{\circ} = 0.866$ 



#### 10. (c)

: The function of controlling mechanism are

- To produce a force equal and opposite to the deflecting force at the final steady position of pointer in order to make the deflection of the pointer definite for a particular magnitude of current.
- In the absence of a controlling mechanism, the pointer will shoot (swing) beyond the final steady position for any magnitude of current and thus the deflection will be indefinite and the pointer will continuously rotate.

#### 11. (b)

D.C sensitivity is 
$$S_{dc} = \frac{1}{I_{FSD}} = \frac{1}{100 \,\mu\text{A}} = 10 \,\text{k}\Omega/\text{V}$$

For a full wave rectifier circuit AC sensitivity

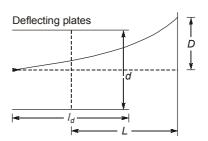
$$S_{\rm ac} = 0.9 \ S_{\rm dc} = 9 \ {\rm k}\Omega/{\rm V}$$
 Resistance of multiplier  $R_s = S_{\rm ac} \ V_{\rm rms} - R_m - 2R_d$  Since diodes are ideal,  $R_d = 0$  Then, 
$$R_s = 9000 \times 10 - 1000$$
 
$$= 89000 \ \Omega$$
 
$$= 89 \ {\rm k}\Omega$$

Energy = 
$$VI \cos\phi \times t$$
  
=  $200 \times 50 \times 0.5 \times 1 \text{ h} = 5 \text{ kWh}$   
Meter makes 200 revolution for 1 unit of energy i.e. 1 kWh  
So, for 5 kWh =  $200 \times 5 = 1000 \text{ revolution}$   
% error =  $\frac{1200 - 1000}{1000} \times 100 = 20\% \text{ fast}$ 

#### 13. (a)

So,

Deflection sensitivity, 
$$S = \frac{Ll_d}{2dV_a}$$
  
Given,  $L = 60 \text{ cm},$   $l_d = 30 \text{ mm},$   $d = 5 \text{ mm}.$   $V_a = 3000 \text{ V}$  
$$= \frac{(0.60)(0.03)}{2 \times 0.005 \times 3000} \text{ m/V}$$
 
$$= \frac{(0.60)(0.03)}{2 \times 0.005 \times 3} \text{ mm/V}$$
 
$$= 0.6 \text{ mm/V}$$



#### 14. (c)

$$V_0/V_1 = \frac{\frac{R_2}{1+j\omega C_2 R_2}}{\frac{R_2}{1+j\omega C_2 R_2} + \frac{R_1}{1+j\omega C_1 R_1}}$$



$$= \frac{R_2(1+j\omega C_1R_1)}{R_2(1+j\omega C_1R_1)+R_1(1+j\omega C_2R_2)}$$

$$V_0/V_1 = \frac{(R_2+j\omega C_1R_1R_2)}{(R_1+R_2)+j\omega R_1R_2(C_1+C_2)}$$

For  $V_0/V_1$  to be independent of frequency, the imaginary part should be 0. Which gives us,

$$\begin{array}{rcl} R_1C_1 &=& R_2C_2 \\ \Rightarrow & 2000 \times 10 &=& 500 \times C_2 \\ \Rightarrow & C_2 &=& 40 \, \mu \mathrm{F} \end{array}$$

#### 15. (d)

Reading of PMMC voltmeter  $(V_{\nu})$  is given by

$$V_{v} = \frac{R_{v}}{R_{s} + R_{v}} \times V_{s}$$

For 10 V scale, 
$$R_v = S_v V$$

$$R_v = S_v V$$
  

$$R_v = 10 \times 10 = 100 \text{ k}\Omega$$

Using above formula, 
$$4 = V_s \times \frac{100}{R_s + 100}$$

For 20 V scale, 
$$R_v = 10 \times 20 = 200 \text{ k}\Omega$$

Using same formula, 
$$6 = \frac{V_s \times 200}{R_s + 200}$$

On solving equation (i) and (ii)

We get, 
$$R_{\rm S} = 200 \; {\rm k} \Omega$$
 
$$V_{\rm S} = 12 \; {\rm V}$$

$$V_{s} = 12 \text{ V}$$

#### 16. (c)

Error =  $\pm$  (0.5% of reading + 5 counts)

Number of counts form 0 to 19999 are 20000

$$\therefore \qquad \text{Error} = \pm \left[ \left( 25 \times \frac{0.5}{100} \right) + 5 \times \frac{100}{20000} \right] \Omega$$
$$= \pm 0.15 \Omega$$

#### 17. (d)

The equivalent resistance of the voltmeter on its 50 V scale is

$$R_V = 100 \,\Omega/V \times 50 \,V = 5 \,k\Omega$$

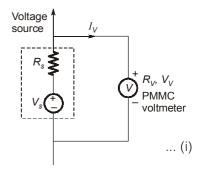
Let  $R_p$  be the equivalent resistance of  $R_x$  and  $R_y$ 

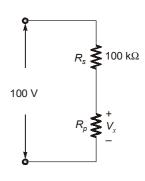
$$R_p = \frac{R_x \times R_v}{R_x + R_v} = \frac{5R_x}{5 + R_x}$$

The equivalent circuit is

$$V_x = \frac{100 \times R_p}{R_p + R_s} = 4.65 \text{ V}$$

$$\Rightarrow \qquad = \frac{100 \times R_p}{R_p + 100} = 4.65 \text{ V}$$





$$R_p = \frac{4.65}{95.35} \times 100 = 4.878 \,\mathrm{k}\Omega$$

Then

$$R_x = \frac{R_p \times 5}{5 - R_p} = \frac{4.878 \times 5}{5 - 4.878} \approx 200 \text{ k}\Omega$$

#### 18. (b)

To make a voltmeter of range (0-60 V) with maximum current limited to 50 μA, the value of multiplier resistor,  $R_{se}$ , will be given by,

$$I_{\text{max}} = \frac{V}{R_m + R_{se}}$$

$$50 \times 10^{-6} = \frac{60}{1000 + R_{se}}$$

$$R_{se} = \frac{60}{50 \times 10^{-6}} - 1000 = \frac{60 \times 10^6}{50} - 1000 = \left(\frac{60 \times 1000}{50} - 1\right) \text{k}\Omega = 1199 \text{ k}\Omega$$

#### 19. (b)

Under balanced condition,

$$Z_{1}Z_{4} = Z_{2}Z_{3}$$

$$\left(r_{1} + \frac{1}{j\omega C_{1}}\right)\left(\frac{R_{4}}{1 + j\omega C_{4}R_{4}}\right) = \frac{R_{3}}{j\omega C_{2}}$$

$$\left(r_{1} + \frac{1}{j\omega C_{1}}\right)R_{4} = \frac{R_{3}}{j\omega C_{2}}\left(1 + j\omega C_{4}R_{4}\right)$$

$$r_{1}R_{4} + \frac{R_{4}}{j\omega C_{1}} = \frac{R_{3}}{j\omega C_{2}} + \frac{R_{3}C_{4}R_{4}}{C_{2}}$$

Separating real and imaginary parts we have

$$r_1 = \frac{R_3 C_4}{C_2} = \frac{1000 \times 0.5}{1} = 500 \text{ ohm}$$

$$C_1 = \frac{C_2 R_4}{R_3} = \frac{1 \times 500}{1000} = 0.5 \,\mu\text{F}$$

Dissipation factor,

$$D_1 = \tan \delta = \omega C_1 r_1$$
  
=  $2 \times \pi \times 100 \times 0.5 \times 10^{-6} \times 500$  (as frequency = 100 Hz)  
= 0.157

#### 20. (d)

FOM of 
$$M_1(S_{V1}) = 5 \text{ k}\Omega/\text{V}$$
  
FOM of  $M_2(S_{V2}) = 10 \text{ k}\Omega/\text{V}$ 

Full scale current through the meters are

$$I_{f1} = \frac{1}{S_{V1}} = \frac{1}{5} = 0.2 \text{ mA}$$

$$I_{f2} = \frac{1}{S_{V2}} = \frac{1}{10} = 0.1 \text{ mA}$$



In series combination, maximum current that can pass through when both the meters are connected in series will be 0.1 mA.

Resistance of 
$$M_1 = 5 \text{ k}\Omega/\text{V} \times 200 = 1 \text{ M}\Omega$$

Resistance of 
$$M_2 = 10 \text{ k}\Omega/\text{V} \times 200 = 2 \text{ M}\Omega$$

Hence, maximum voltage rating

= 
$$0.1 \text{ mA} (1 \text{ M}\Omega + 2 \text{ M}\Omega) = 300 \text{ V}$$

21. (b)

$$V_1 = 100 \pm 1.5 \text{ V}$$
  
 $V_2 = 150 \pm 2 \text{ V}$ 

$$V_2 = 150 \pm 2 \text{ V}$$

$$V_3 = V_1 + V_2$$

Standard deviation in  $V_3$  will be

$$\sigma_{V_3} = \sqrt{\left(\frac{\partial V_3}{\partial V_1}\right)^2 \sigma_{V_1}^2 + \left(\frac{\partial V_3}{\partial V_2}\right)^2 \sigma_{V_2}^2}$$

$$\frac{\partial V_3}{\partial V_1} = \frac{\partial}{\partial V_1} (V_1 + V_2) = 1$$

$$\frac{\partial V_3}{\partial V_2} = \frac{\partial}{\partial V_2} (V_1 + V_2) = 1$$

$$\sigma_{V_3} = \sqrt{1^2 \times (1.5)^2 + 1^2 \times (2)^2} = \sqrt{6.25} = 2.5 \text{ V}$$

22. (c)

*:*.



$$I = -5 + 8\sqrt{2}\sin(\omega t + 60^{\circ}) + 6\sqrt{2}\sin(\omega t + 30^{\circ})$$

$$I_1 = -5 A$$

$$I_2 = 8\sqrt{2}\sin(\omega t + 60^\circ)$$

$$I_3 = 6\sqrt{2}\sin(\omega t + 30^\circ)$$

Averave value of  $I_1 = -5 \text{ A}$ 

Averave value of  $I_2 = 0$  A

Averave value of  $I_3 = 0$  A

average value of I = -5 ASo,

PMMC reads only average value of current, therefore PMMC reads = -5 A (since it is centre zero) RMS meter and moving iron instrument both measures rms value

RMS value of 
$$I = \sqrt{(-5)^2 + \left(\frac{8\sqrt{2}}{\sqrt{2}}\right)^2 + \left(\frac{6\sqrt{2}}{\sqrt{2}}\right)^2} = 11.18 \text{ A}$$



# 23. (d)

The wattmeter measures the load power plus the loss in current coil as current coil is connected to load side.

So, Loss in current coil = 
$$I^2r = 10 \times 10 \times 0.02 = 2$$
 watt  
Load power =  $VI\cos\phi = 200 \times 10 \times 1 = 2000$  watt

So, Error = 
$$\frac{2}{2000} \times 100 = 0.1\%$$

i.e. wattmeter reads 0.1% more than load power

# 24. (b)

$$C_1 = 110 \text{ pF}, C_2 = 20 \text{ pF}$$

$$n = \frac{f_2}{f_1} = \frac{2f}{f} = 2$$

$$C_d = \frac{C_1 - n^2 C_2}{n^2 - 1} = \frac{110 - 4 \times 20}{3} = 10 \text{ pF}$$

# 25. (a)

Number of pulses per second = 
$$\frac{\text{Reading of digital meter}}{\text{Gating period}} = \frac{0048}{10^4 \times 10^{-6}} = 4800$$

$$\therefore \qquad \text{Speed = } \frac{\text{No. of pulses per second}}{\text{No. of teeth}} = \frac{4800}{120} = 40 \text{ r.p.s.}$$

# 27. (b)

For the d.c. potentiometer, we have:

$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$
 or, emf of the test cell,  $E_2 = E_1 \cdot \frac{l_2}{l_1} = (1.18) \times \frac{680}{600} \approx 1.34 \text{ V}$ 

# 28. (b)

Sensitivity of LVDT = 
$$\frac{\text{Output Voltage}}{\text{Displacement}} = \frac{5 \times 10^{-3}}{2} = 2.5 \text{ mV/mm}$$

Sensitivity of instrument = Amplification factor  $\times$  Sensitivity of LVDT =  $200 \times 2.5 \text{ mV/mm} = 500 \text{ mV/mm}$ 

Minimum voltage that can be read on the voltmeter =  $\left(\frac{10}{100}\right) \times \frac{1}{5} = 0.02 \text{ V} = 20 \text{ mV}$ 

Resolution: Minimum cange in input displacement that can read by instrument.

$$\therefore \text{ Sensitivity,} \qquad \qquad S = \frac{\Delta \text{ o/p}}{\Delta \text{ i/p}}$$

$$\therefore \qquad \Delta (i/p)_{min} = \frac{\Delta (o/p)_{min}}{S} = \frac{20 \text{ mV}}{500 \text{ mV/mm}} = 40 \text{ } \mu\text{m}$$

# 29. (c)

To by pass the additional current we have to connect a shunt resistance across the DC ammeter.

: 
$$I_{fsd} = 1 \text{ mA}$$
 
$$R_m = 100 \Omega$$

$$R_{sh} = \frac{R_m}{m-1}$$

Where, multiplying factor,  $m = \frac{I}{I_{fsd}} = \frac{1}{1 \times 10^{-3}} = 1000$ 

$$R_{sh} = \frac{100}{1000 - 1} = 0.1001 \ \Omega$$

# 30. (b)

$$V_0 = \left[g \times t \times \frac{F}{A}\right] \times \text{Gain}$$

$$F = \frac{V_0 \times A}{g \times t \times gain} = \frac{50 \times 5 \times 5 \times 10^{-6}}{0.025 \times 2 \times 10^{-3} \times 250} = 0.1 \text{ N}$$

### \_\_\_